

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	FeinCMS 1.8.4 documentation

FeinCMS - An extensible Django-based CMS

[image: _images/tree_editor.png]
FeinCMS is an extremely stupid content management system. It knows
nothing about content – just enough to create an admin interface for
your own page content types. It lets you reorder page content blocks
using a drag-drop interface, and you can add as many content blocks
to a region (f.e. the sidebar, the main content region or something
else which I haven’t thought of yet). It provides helper functions,
which provide ordered lists of page content blocks. That’s all.

Adding your own content types is extremely easy. Do you like textile
that much, that you’d rather die than using a rich text editor?
Then add the following code to your project, and you can go on using the
CMS without being forced to use whatever the developers deemed best:

from feincms.module.page.models import Page
from django.contrib.markup.templatetags.markup import textile
from django.db import models

class TextilePageContent(models.Model):
 content = models.TextField()

 class Meta:
 abstract = True

 def render(self, **kwargs):
 return textile(self.content)

Page.create_content_type(TextilePageContent)

That’s it. Only ten lines of code for your own page content type.

Contents

	Installation instructions
	Installation

	Configuration

	The built-in page module
	Activating the page module and creating content types

	Setting up the admin interface

	Wiring up the views

	Adding another content type

	Page extension modules

	Using page request processors

	Using page response processors

	WYSIWYG Editors

	ETag handling

	Sitemaps

	Content types - what your page content is built of
	What is a content type anyway?

	Rendering contents in your templates

	Implementing your own content types

	Customizing the render method for different regions

	Extra media for content types

	Influencing request processing through a content type

	Bundled content types
	Application content

	Comments content

	Contact form content

	Inline files

	Inline images

	Media library integration

	Raw content

	Rich text

	RSS feeds

	Section content

	Table content

	Template content

	Video inclusion code for youtube, vimeo etc.

	Restricting a content type to a subset of regions

	Design considerations for content types

	Configuring and self-checking content types at creation time

	Obtaining a concrete content type model

	Extensions

	Administration interfaces
	The tree editor
	AJAX checkboxes

	The item editor
	Customizing the item editor

	Customizing the individual content type forms

	Putting it all together

	Integrating 3rd party apps into your site
	Default page handler

	Generic and custom views

	Integrating 3rd party apps
	Adapting the 3rd party application for FeinCMS

	Registering the 3rd party application with FeinCMS’ ApplicationContent

	Writing the models

	Returning content from views

	Letting the application content use the full power of Django’s template inheritance

	More on reversing URLs

	Additional customization possibilities

	Letting 3rd party apps define navigation entries

	Media library
	Configuration

	Rendering media file contents

	Media file metadata

	Using the media library in your own apps and content types

	Template tags
	General template tags

	Page module-specific template tags

	Application content template tags

	Database migration support for FeinCMS with South

	Versioning database content with django-reversion

	Advanced topics
	feincms.models.Base — CMS base class

	feincms.utils — General utilities

	Software design considerations
	About rich text editors

	Content blocks

	Performance considerations
	Denormalization

	Caching

	Frequently Asked Questions
	Should I extend the builtin modules and contents, or should I write my own?

	I run syncdb and get a message about missing columns in the page table

	Contributing to the development of FeinCMS
	Repository branches

	FeinCMS Deprecation Timeline
	1.6

	1.7

	1.8

	1.9

API Documentation

	FeinCMS core
	General functions

	Base models

	Admin classes
	ItemEditor

	TreeEditor

	FilterSpec classes for list_filter customization

	Page module
	Models

	Request and response processors

	Admin classes

	Sitemap module

	Extensions
	Page excerpts

	Navigation extensions

	Related pages

	Symlinked page content

	Flexible page titles

	Extensions not specific to the page module
	Creation and modification timestamps

	Content type count denormalization

	Date-based publishing

	Featured items

	Search engine optimization fields

	Translations

	Media library
	Models

	Admin classes

	Fields

	Blog module
	Extensions
	Tagging

	Blog entry translations

	Content types
	ApplicationContent

	CommentsContent

	ContactFormContent

	FileContent

	ImageContent

	MediaFileContent

	RawContent

	RichTextContent

	RSSContent

	SectionContent

	TableContent

	TemplateContent

	VideoContent

	Context processors

	Contrib
	Model and form fields

	Tagging

	Settings

	Shortcuts

	Template tags
	FeinCMS tags

	Thumbnail filters

	Page-module specific tags

	ApplicationContent tags

	Translations

	Utilities
	HTML utilities

	Template tag helpers

	Views and decorators
	Decorators

	Management commands
	Database schema checker

	Content-type specific management commands

	Page tree rebuilders

	Miscellaneous commands

Releases

	FeinCMS 1.8 release notes

	FeinCMS 1.7 release notes

	FeinCMS 1.6 release notes

	FeinCMS 1.5 release notes

	FeinCMS 1.4 release notes

	FeinCMS 1.3 release notes

	FeinCMS 1.2 release notes

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2009-2010, Feinheit GmbH and contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FeinCMS 1.8.4 documentation

Installation instructions

Installation

This document describes the steps needed to get FeinCMS up and running.

FeinCMS is based on Django, so you need a working Django [http://www.djangoproject.com/] installation
first. The minimum support version of Django [http://www.djangoproject.com/] is the 1.4 line of releases.

You can download a stable release of FeinCMS using pip:

$ pip install feincms

Pip will install feincms and its dependencies. It will however not install
documentation, tests or the example project which comes with the development version,
which you can download using the Git [http://git-scm.com/] version control system:

$ git clone git://github.com/feincms/feincms.git

Feincms, some content types or cleaning modules are dependent on the following apps, which are installed when using pip:
feedparser [http://www.feedparser.org/], Pillow [https://pypi.python.org/pypi/Pillow/] and django-mptt [http://github.com/django-mptt/django-mptt/].

However, django-tagging [http://code.google.com/p/django-tagging/] is not installed because the blog module that uses it is merely a proof of
concept. If you are looking to implement a blog, check out elephantblog [http://github.com/feincms/feincms-elephantblog].

You will also need a Javascript WYSIWYG editor of your choice (Not included).
TinyMCE [http://www.tinymce.com/] works out of the box and is recommended.

Configuration

There isn’t much left to do apart from adding a few entries to INSTALLED_APPS,
most commonly you’ll want to add feincms, mptt, feincms.module.page and
feincms.module.medialibrary.
The customized administration interface needs some media and javascript
libraries which you have to make available to the browser. FeinCMS uses Django’s
django.contrib.staticfiles application for this purpose, the media files will
be picked up automatically by the collectstatic management command.

If your website is multi-language you have to define LANGUAGES in the settings [https://docs.djangoproject.com/en/dev/topics/i18n/translation/#how-django-discovers-language-preference].

Please note that the feincms module will not create or need any database
tables, but you need to put it into INSTALLED_APPS because otherwise the
templates in feincms/templates/ will not be found by the template loader.

The tools contained in FeinCMS can be used for many CMS-related
activities. The most common use of a CMS is to manage a hierarchy of
pages and this is the most advanced module of FeinCMS too. Please
proceed to The built-in page module to find out how you can get the page module
up and running.

 Copyright 2009-2010, Feinheit GmbH and contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FeinCMS 1.8.4 documentation

The built-in page module

FeinCMS is primarily a system to work with lists of content blocks which
you can assign to arbitrary other objects. You do not necessarily have to
use it with a hierarchical page structure, but that’s the most common use
case of course. Being able to put content together in small manageable
pieces is interesting for other uses too, e.g. for weblog entries where you
have rich text content interspersed with images, videos or maybe even galleries.

Activating the page module and creating content types

To activate the page module, you need to follow the instructions in
Installation instructions and afterwards add feincms.module.page to your
INSTALLED_APPS.

Before proceeding with manage.py syncdb, it might be a good idea to take
a look at Page extension modules – the page module does have the minimum of
features in the default configuration and you will probably want to enable
several extensions.

You need to create some content models too. No models are created by default,
because there is no possibility to unregister models. A sane default might
be to create MediaFileContent and
RichTextContent models; you can do this
by adding the following lines somewhere into your project, for example in a
models.py file that will be processed anyway:

from django.utils.translation import ugettext_lazy as _

from feincms.module.page.models import Page
from feincms.content.richtext.models import RichTextContent
from feincms.content.medialibrary.models import MediaFileContent

Page.register_extensions('datepublisher', 'translations') # Example set of extensions

Page.register_templates({
 'title': _('Standard template'),
 'path': 'base.html',
 'regions': (
 ('main', _('Main content area')),
 ('sidebar', _('Sidebar'), 'inherited'),
),
 })

Page.create_content_type(RichTextContent)
Page.create_content_type(MediaFileContent, TYPE_CHOICES=(
 ('default', _('default')),
 ('lightbox', _('lightbox')),
))

It will be a good idea most of the time to register the
RichTextContent
first, because it’s the most used content type for many applications. The
content type dropdown will contain content types in the same order as they
were registered.

Please note that you should put these statements into a models.py file
of an app contained in INSTALLED_APPS. That file is executed at Django startup time.

Setting up the admin interface

The customized admin interface code is contained inside the ModelAdmin
subclass, so you do not need to do anything special here.

If you use the RichTextContent, you
need to download TinyMCE [http://www.tinymce.com/] and configure FeinCMS’
richtext support:

FEINCMS_RICHTEXT_INIT_CONTEXT = {
 'TINYMCE_JS_URL': STATIC_URL + 'your_custom_path/tiny_mce.js',
}

Wiring up the views

Just add the following lines to your urls.py to get a catch-all URL pattern:

urlpatterns += patterns('',
 url(r'', include('feincms.urls')),
)

If you want to define a page as home page for the whole site, you can give it
an override_url value of '/'.

More information can be found in Integrating 3rd party apps into your site

Adding another content type

Imagine you’ve got a third-party gallery application and you’d like to include
excerpts of galleries inside your content. You’d need to write a GalleryContent
base class and let FeinCMS create a model class for you with some important
attributes added.

from django.db import models
from django.template.loader import render_to_string
from feincms.module.page.models import Page
from gallery.models import Gallery

class GalleryContent(models.Model):
 gallery = models.ForeignKey(Gallery)

 class Meta:
 abstract = True # Required by FeinCMS, content types must be abstract

 def render(self, **kwargs):
 return render_to_string('gallery/gallerycontent.html', {
 'content': self, # Not required but a convention followed by
 # all of FeinCMS' bundled content types
 'images': self.gallery.image_set.order_by('?')[:5],
 })

Page.create_content_type(GalleryContent)

The newly created GalleryContent for Page
will live in the database table page_page_gallerycontent.

Note

FeinCMS requires your content type model to be abstract.

More information about content types is available in Content types - what your page content is built of.

Page extension modules

Extensions are a way to put often-used functionality easily accessible without
cluttering up the core page model for those who do not need them. The extensions
are standard python modules with a register() method which will be called
upon registering the extension. The register() method receives the
Page class itself and the model admin class
PageAdmin as arguments. The extensions can
be activated as follows:

Page.register_extensions('navigation', 'titles', 'translations')

The following extensions are available currently:

	changedate — Creation and modification dates

Adds automatically maintained creation and modification date fields
to the page.

	ct_tracker — Content type cache

Helps reduce database queries if you have three or more content types.

	datepublisher — Date-based publishing

Adds publication date and end date fields to the page, thereby enabling the
administrator to define a date range where a page will be available to
website visitors.

	excerpt — Page summary

Add a brief excerpt summarizing the content of this page.

	featured — Simple featured flag for a page

Lets administrators set a featured flag that lets you treat that page special.

	navigation — Navigation extensions

Adds navigation extensions to the page model. You can define subclasses of
NavigationExtension, which provide submenus to the navigation generation
mechanism. See Letting 3rd party apps define navigation entries for more information on how to use
this extension.

	relatedpages — Links related content

Add a many-to-many relationship field to relate this page to other pages.

	seo — Search engine optimization

Adds fields to the page relevant for search engine optimization (SEO),
currently only meta keywords and description.

	sites — Limit pages to sites

Allows to limit a page to a certain site and not display it on other sites.

	symlinks — Symlinked content extension

Sometimes you want to reuse all content from a page in another place. This
extension lets you do that.

	titles — Additional titles

Adds additional title fields to the page model. You may not only define a
single title for the page to be used in the navigation, the <title> tag and
inside the content area, you are not only allowed to define different titles
for the three uses but also enabled to define titles and subtitles for the
content area.

	translations — Page translations

Adds a language field and a recursive translations many to many field to the
page, so that you can define the language the page is in and assign
translations. I am currently very unhappy with state of things concerning
the definition of translations, so that extension might change somewhat too.
This extension also adds new instructions to the setup_request method where
the Django i18n tools are initialized with the language given on the page
object.

While it is not required by FeinCMS itself it’s still recommended to add
django.middleware.locale.LocaleMiddleware to the
MIDDLEWARE_CLASSES; otherwise you will see strange language switching
behavior in non-FeinCMS managed views (such as third party apps not integrated
using feincms.content.application.models.ApplicationContent or
Django’s own administration tool).
You need to have defined settings.LANGUAGES as well.

Note

These extension modules add new fields to the Page class. If you add or
remove page extensions after you’ve run syncdb for the first time you
have to change the database schema yourself, or use Database migration support for FeinCMS with South.

Using page request processors

A request processor is a function that gets the currently selected page and the
request as parameters and returns either None (or nothing) or a HttpResponse.
All registered request processors are run before the page is actually rendered.
If the request processor indeed returns a HttpResponse, further rendering of
the page is cut short and this response is returned immediately to the client.
It is also possible to raise an exception which will be handled like all exceptions
are handled in Django views.

This allows for various actions dependent on page and request, for example a
simple user access check can be implemented like this:

def authenticated_request_processor(page, request):
 if not request.user.is_authenticated():
 raise django.core.exceptions.PermissionDenied

Page.register_request_processor(authenticated_request_processor)

register_request_processor has an optional second argument named key.
If you register a request processor with the same key, the second processor
replaces the first. This is especially handy to replace the standard request
processors named path_active (which checks whether all ancestors of
a given page are active too) and redirect (which issues HTTP-level redirects
if the redirect_to page field is filled in).

Using page response processors

Analogous to a request processor, a response processor runs after a page
has been rendered. It needs to accept the page, the request and the response
as parameters and may change the response (or throw an exception, but try
not to).

A response processor is the right place to tweak the returned http response
for whatever purposes you have in mind.

def set_random_header_response_processor(page, request, response):
 response['X-Random-Number'] = 42

Page.register_response_processor(set_random_header_response_processor)

register_response_processor has an optional second argument named key,
exactly like register_request_processor above. It behaves in the same way.

WYSIWYG Editors

TinyMCE 3 is configured by default to only allow for minimal formatting. This has proven
to be the best compromise between letting the client format text without destroying the
page design concept. You can customize the TinyMCE settings by creating your own
init_richtext.html that inherits from admin/content/richtext/init_tinymce.html.
You can even set your own CSS and linklist files like so:

FEINCMS_RICHTEXT_INIT_CONTEXT = {
 'TINYMCE_JS_URL': STATIC_URL + 'your_custom_path/tiny_mce.js',
 'TINYMCE_CONTENT_CSS_URL': None, # add your css path here
 'TINYMCE_LINK_LIST_URL': None # add your linklist.js path here
}

FeinCMS is set up to use TinyMCE [http://www.tinymce.com/] 3 but you can use CKEditor [http://ckeditor.com/] instead if you prefer
that one. Change the following settings:

FEINCMS_RICHTEXT_INIT_TEMPLATE = 'admin/content/richtext/init_ckeditor.html'
FEINCMS_RICHTEXT_INIT_CONTEXT = {
 'CKEDITOR_JS_URL': STATIC_URL + 'path_to_your/ckeditor.js',
}

Alternatively, you can also use TinyMCE [http://www.tinymce.com/] 4 by changing the following setting:

FEINCMS_RICHTEXT_INIT_TEMPLATE = 'admin/content/richtext/init_tinymce4.html'

ETag handling

An ETag is a string that is associated with a page – it should change if
(and only if) the page content itself has changed. Since a page’s content
may depend on more than just the raw page data in the database (e.g. it
might list its children or a navigation tree or an excerpt from some other
place in the CMS alltogether), you are required to write an etag producing
method for the page.

Very stupid etag function, a page is supposed the unchanged as long
as its id and slug do not change. You definitely want something more
involved, like including last change dates or whatever.
def my_etag(page, request):
 return 'PAGE-%d-%s' % (page.id, page.slug)
Page.etag = my_etag

Page.register_request_processors(Page.etag_request_processor)
Page.register_response_processors(Page.etag_response_processor)

Sitemaps

To create a sitemap that is automatically populated with all pages in your
Feincms site, add the following to your top-level urls.py:

from feincms.module.page.sitemap import PageSitemap
sitemaps = {'pages' : PageSitemap}

urlpatterns += patterns('',
 url(r'^sitemap\.xml$', 'django.contrib.sitemaps.views.sitemap',
 {'sitemaps': sitemaps}),
)

This will produce a default sitemap at the /sitemap.xml url. A sitemap can be
further customised by passing it appropriate parameters, like so:

sitemaps = {'pages': PageSitemap(max_depth=2)}

The following parameters can be used to modify the behaviour of the sitemap:

	navigation_only – if set to True, only pages that are in_navigation will appear
in the site map.

	max_depth – if set to a non-negative integer, will limit the sitemap generated
to this page hierarchy depth.

	changefreq – should be a string or callable specifying the page update frequency,
according to the sitemap protocol.

	queryset – pass in a query set to restrict the Pages to include
in the site map.

	filter – pass in a callable that transforms a queryset to filter
out the pages you want to include in the site map.

	extended_navigation – if set to True, adds pages from any navigation
extensions. If using PagePretender, make sure to include title, url,
level, in_navigation and optionally modification_date.

 Copyright 2009-2010, Feinheit GmbH and contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FeinCMS 1.8.4 documentation

Content types - what your page content is built of

You will learn how to add your own content types and how you can
render them in a template.

What is a content type anyway?

In FeinCMS, a content type is something to attach as content to a base model,
for example a CMS Page (the base model) may have several rich text components
associated to it (those would be RichTextContent content types).

Every content type knows, amongst other things, how to render itself.
Think of content types as “snippets” of information to appear on a page.

Rendering contents in your templates

Simple:

<div id="content">
 {% block content %}
 {% for content in feincms_page.content.main %}
 {{ content.render }}
 {% endfor %}
 {% endblock %}
</div>

<div id="sidebar">
 {% block sidebar %}
 {% for content in feincms_page.content.sidebar %}
 {{ content.render }}
 {% endfor %}
 {% endblock %}
</div>

Implementing your own content types

The minimal content type is an abstract Django model with a render()
method, nothing else:

class TextileContent(models.Model):
 content = models.TextField()

 class Meta:
 abstract = True

 def render(self, **kwargs):
 return textile(self.content)

All content types’ render() methods must accept **kwargs. This
allows easily extending the interface with additional parameters. But more
on this later.

FeinCMS offers a method on feincms.models.Base called
create_content_type() which will create concrete content types from
your abstract content types. Since content types can be used for different
CMS base models such as pages and blog entries (implementing a rich text
or an image content once and using it for both models makes lots of sense)
your implementation needs to be abstract. create_content_type() adds
a few utility methods and a few model fields to build the concrete type,
a foreign key to the base model (f.e. the Page) and
several properties indicating where the content block will be positioned
in the rendered result.

Note

The examples on this page assume that you use the
Page CMS base model. The principles
outlined apply for all other CMS base types.

The complete code required to implement and include a custom textile content
type is shown here:

from feincms.module.page.models import Page
from django.contrib.markup.templatetags.markup import textile
from django.db import models

class TextilePageContent(models.Model):
 content = models.TextField()

 class Meta:
 abstract = True

 def render(self, **kwargs):
 return textile(self.content)

Page.create_content_type(TextilePageContent)

There are three field names you should not use because they are added
by create_content_type: These are parent, region and ordering.
These fields are used to specify the place where the content will be
placed in the output.

Customizing the render method for different regions

The default render method uses the region key to find a render method
in your concrete content type and calls it. This allows you to customize
the output depending on the region; you might want to show the same
content differently in a sidebar and in the main region for example.
If no matching method has been found a NotImplementedError is raised.

This render method tries to be a sane default, nothing more. You can
simply override it and put your own code there if you do not any
differentiation, or if you want to do it differently.

All render methods should accept **kwargs. Some render methods might
need the request, for example to determine the correct Google Maps API
key depending on the current domain. The two template tags feincms_render_region
and feincms_render_content pass the current rendering context as a
keyword argument too.

The example above could be rewritten like this:

{% load feincms_tags %}

 <div id="content">
 {% block content %}
 {% for content in feincms_page.content.main %}
 {% feincms_render_content content request %}
 {% endfor %}
 {% endblock %}
 </div>

 <div id="sidebar">
 {% block sidebar %}
 {% for content in feincms_page.content.sidebar %}
 {% feincms_render_content content request %}
 {% endfor %}
 {% endblock %}
 </div>

Or even like this:

{% load feincms_tags %}

 <div id="content">
 {% block content %}
 {% feincms_render_region feincms_page "main" request %}
 {% endblock %}
 </div>

 <div id="sidebar">
 {% block sidebar %}
 {% feincms_render_region feincms_page "sidebar" request %}
 {% endblock %}
 </div>

This does exactly the same, but you do not have to loop over the page content
blocks yourself. You need to add the request context processor to your list
of context processors for this example to work.

Extra media for content types

Some content types require extra CSS or javascript to work correctly. The
content types have a way of individually specifying which CSS and JS files
they need. The mechanism in use is almost the same as the one used in
form and form widget media [http://docs.djangoproject.com/en/dev/topics/forms/media/].

Include the following code in the <head> section of your template to include
all JS and CSS media file definitions:

{{ feincms_page.content.media }}

The individual content types should use a media property do define the
media files they need:

from django import forms
from django.db import models
from django.template.loader import render_to_string

class MediaUsingContentType(models.Model):
 album = models.ForeignKey('gallery.Album')

 class Meta:
 abstract = True

 @property
 def media(self):
 return forms.Media(
 css={'all': ('gallery/gallery.css',),},
 js=('gallery/gallery.js',),
)

 def render(self, **kwargs):
 return render_to_string('content/gallery/album.html', {
 'content': self,
 })

Please note that you can’t define a Media inner class (yet). You have to
provide the media property yourself. As with form and widget media definitions,
either STATIC_URL or MEDIA_URL (in this order) will be prepended to
the media file path if it is not an absolute path already.

Alternatively, you can use the media_property function from django.forms
to implement the functionality, which then also supports inheritance
of media files:

from django.forms.widgets import media_property

class MediaUsingContentType(models.Model):
 class Media:
 js = ('whizbang.js',)

MediaUsingContentType.media = media_property(MediaUsingContentType)

Influencing request processing through a content type

Since FeinCMS 1.3, content types are not only able to render themselves, they
can offer two more entry points which are called before and after the response
is rendered. These two entry points are called process() and finalize().

process() is called before rendering the template starts. The method always
gets the current request as first argument, but should accept **kwargs for
later extensions of the interface. This method can short-circuit
the request-response-cycle simply by returning any response object. If the return
value is a HttpResponse, the standard FeinCMS view function does not do any
further processing and returns the response right away.

As a special case, if a process() method returns True (for successful
processing), Http404 exceptions raised by any other content type on the
current page are ignored. This is especially helpful if you have several
ApplicationContent content types on a single page.

finalize() is called after the response has been rendered. It receives
the current request and response objects. This function is normally used to
set response headers inside a content type or do some other post-processing.
If this function has any return value, the FeinCMS view will return this value
instead of the rendered response.

Here’s an example form-handling content which uses all of these facilities:

class FormContent(models.Model):
 class Meta:
 abstract = True

 def process(self, request, **kwargs):
 if request.method == 'POST':
 form = FormClass(request.POST)
 if form.is_valid():
 # Do something with form.cleaned_data ...

 return HttpResponseRedirect('?thanks=1')

 else:
 form = FormClass()

 self.rendered_output = render_to_string('content/form.html', {
 'form': form,
 'thanks': request.GET.get('thanks'),
 })

 def render(self, **kwargs):
 return getattr(self, 'rendered_output', u'')

 def finalize(self, request, response):
 # Always disable caches if this content type is used somewhere
 response['Cache-Control'] = 'no-cache, must-revalidate'

Note

Please note that the render method should not raise an exception if
process has not been called beforehand.

Warning

The FeinCMS page module views
guarantee that process is called beforehand, other modules may not do
so. feincms.module.blog for instance does not.

Bundled content types

Application content

	
class feincms.content.application.models.ApplicationContent

	

Used to let the administrator freely integrate 3rd party applications into
the CMS. Described in Integrating 3rd party apps.

Comments content

	
class feincms.content.comments.models.CommentsContent

	

Comment list and form using django.contrib.comments.

Contact form content

	
class feincms.content.contactform.models.ContactFormContent

	

Simple contact form. Also serves as an example how forms might be used inside
content types.

Inline files

	
class feincms.content.file.models.FileContent

	

Simple content types holding just a file.
You should probably use the MediaFileContent though.

Inline images

	
class feincms.content.image.models.ImageContent

	

Simple content types holding just an image with a
position. You should probably use the MediaFileContent though.

Additional arguments for create_content_type():

	POSITION_CHOICES

	FORMAT_CHOICES

Media library integration

	
class feincms.content.medialibrary.v2.MediaFileContent

	

Mini-framework for arbitrary file types with customizable rendering
methods per-filetype. Add ‘feincms.module.medialibrary’ to INSTALLED_APPS.

Additional arguments for create_content_type():

	TYPE_CHOICES: (mandatory)

A list of tuples for the type choice radio input fields.

This field allows the website administrator to select a suitable presentation
for a particular media file. For example, images could be shown as thumbnail
with a lightbox or offered as downloads. The types should be specified as
follows for this use case:

..., TYPE_CHOICES=(('lightbox', _('lightbox')), ('download', _('as download'))),

The MediaFileContent tries loading the following templates in order for
a particular image media file with type download:

	content/mediafile/image_download.html

	content/mediafile/image.html

	content/mediafile/download.html

	content/mediafile/default.html

The media file type is stored directly on
MediaFile.

The file type can also be used to select templates which can be used
to further customize the presentation of mediafiles, f.e.
content/mediafile/swf.html to automatically generate the necessary
<object> and <embed> tags for flash movies.

Raw content

	
class feincms.content.raw.models.RawContent

	

Raw HTML code, f.e. for flash movies or javascript code.

Rich text

	
class feincms.content.richtext.models.RichTextContent

	

Rich text editor widget, stripped down to the essentials; no media support, only
a few styles activated. The necessary javascript files are not included,
you need to put them in the right place on your own.

By default, RichTextContent expects a TinyMCE activation script at
<MEDIA_URL>js/tiny_mce/tiny_mce.js. This can be customized by overriding
FEINCMS_RICHTEXT_INIT_TEMPLATE and FEINCMS_RICHTEXT_INIT_CONTEXT in
your settings.py file.

If you only want to provide a different path to the TinyMCE javascript file,
you can do this as follows:

FEINCMS_RICHTEXT_INIT_CONTEXT = {
 'TINYMCE_JS_URL': '/your_custom_path/tiny_mce.js',
 }

If you pass cleanse=True to the create_content_type invocation for your
RichTextContent types, the HTML code will be cleansed right before saving
to the database everytime the content is modified.

Additional arguments for create_content_type():

	cleanse:

Whether the HTML code should be cleansed of all tags and attributes
which are not explicitly whitelisted. The default is False.

RSS feeds

	
class feincms.content.rss.models.RSSContent

	

A feed reader widget. This also serves as an example how to build a content
type that needs additional processing, in this case from a cron job. If an
RSS feed has been added to the CMS, manage.py update_rsscontent should
be run periodically (either through a cron job or through other means) to
keep the shown content up to date. The feedparser module is required.

Section content

	
class feincms.content.section.models.SectionContent

	

Combined rich text editor, title and media file.

Table content

	
class feincms.content.table.models.TableContent

	

The default configuration of the rich text editor does not include table
controls. Because of this, you can use this content type to provide HTML
table editing support. The data is stored in JSON format, additional
formatters can be easily written which produce the definitive HTML
representation of the table.

Template content

	
class feincms.content.template.models.TemplateContent

	

This is a content type that just includes a snippet from a template.
This content type scans all template directories for templates below
content/template/ and allows the user to select one of these templates
which are then rendered using the Django template language.

Note that some file extensions are automatically filtered so they won’t
appear in the list, namely anything that matches *.~ and *.tmp will be
ignored.

Also note that a template content is not sandboxed or specially rendered.
Whatever a django template can do a TemplateContent snippet can do too,
so be careful whom you grant write permissions.

Video inclusion code for youtube, vimeo etc.

	
class feincms.content.video.models.VideoContent

	

A easy-to-use content type that automatically generates Flash video inclusion code
from a website link. Currently only YouTube and Vimeo links are supported.

Restricting a content type to a subset of regions

Imagine that you have developed a content type which really only makes sense in
the sidebar, not in the main content area. It is very simple to restrict a
content type to a subset of regions, the only thing you have to do is pass a
tuple of region keys to the create_content_type method:

Page.create_content_type(SomeSidebarContent, regions=('sidebar',))

Note that the restriction only influences the content types shown in the
“Add new item”-dropdown in the item editor. The user may still choose to add
the SomeSidebarContent to the sidebar, for example, and then proceed to move the
content item into the main region.

Design considerations for content types

Because the admin interface is already filled with information, it is sometimes
easier to keep the details for certain models outside the CMS content types.
Complicated models do not need to be edited directly in the CMS item editor,
you can instead use the standard Django administration interface for them, and
integrate them into FeinCMS by utilizing foreign keys. Already the bundled
FileContent and ImageContent models can be viewed as bad style in this respect,
because if you want to use a image or file more than once you need to upload it
for every single use instead of being able to reuse the uploaded file. The
media library module and MediaFileContent resolve at least this issue nicely by
allowing the website administrator to attach metadata to a file and
include it in a page by simply selecting the previously uploaded media file.

Configuring and self-checking content types at creation time

So you’d like to check whether Django is properly configured for your content
type, or maybe add model/form fields depending on arguments passed at content
type creation time? This is very easy to achieve. The only thing you need to
do is adding a classmethod named initialize_type() to your content type, and
pass additional keyword arguments to create_content_type().

If you want to see an example of these two uses, have a look at the
MediaFileContent.

It is generally recommended to use this hook to configure content types
compared to putting the configuration into the site-wide settings file. This
is because you might want to configure the content type differently
depending on the CMS base model that it is used with.

Obtaining a concrete content type model

The concrete content type models are stored in the same module as the CMS base
class, but they do not have a name using which you could import them. Accessing
internal attributes is hacky, so what is the best way to get a hold onto the
concrete content type?

There are two recommended ways. The example use a RawContent content type and
the Page CMS base class.

You could take advantage of the fact that create_content_type returns the
created model:

from feincms.module.page.models import Page
from feincms.content.raw.models import RawContent

PageRawContent = Page.create_content_type(RawContent)

Or you could use content_type_for():

from feincms.content.raw.models import RawContent

PageRawContent = Page.content_type_for(RawContent)

 Copyright 2009-2010, Feinheit GmbH and contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FeinCMS 1.8.4 documentation

Extensions

The extensions mechanism has been refactored to remove the need to make models
know about their related model admin classes. The new module
feincms.extensions contains mixins and base classes - their purpose
is as follows:

	
class feincms.extensions.ExtensionsMixin

	This mixin provides the register_extensions method which is the place
where extensions are registered for a certain model. Extensions can be
specified in the following ways:

	Subclasses of Extension

	Dotted Python module paths pointing to a subclass of the aforementioned
extension class

	Dotted Python module paths pointing to a module containing either a class
named Extension or a function named register (for legacy
extensions)

	
class feincms.extensions.Extension

	This is the base class for your own extension. It has the following methods
and properties:

	
model

	The model class.

	
handle_model(self)

	The method which modifies the Django model class. The model class is
available as self.model.

	
handle_modeladmin(self, modeladmin)

	This method receives the model admin instance bound to the model. This
method could be called more than once, especially when using more than
one admin site.

	
class feincms.extensions.ExtensionModelAdmin

	This is a model admin subclass which knows about extensions, and lets the
extensions do their work modifying the model admin instance after it has
been successfully initialized. It has the following methods and properties:

	
initialize_extensions(self)

	This method is automatically called at the end of initialization and
loops through all registered extensions and calls their
handle_modeladmin method.

	
add_extension_options(self, *f)

	This is a helper to add fields and fieldsets to a model admin instance.
Usage is as follows:

modeladmin.add_extension_options('field1', 'field2')

Or:

modeladmin.add_extension_options(_('Fieldset title'), {
 'fields': ('field1', 'field2'),
 })

Note

Only model and admin instances which inherit from
ExtensionsMixin and
ExtensionModelAdmin can be extended
this way.

 Copyright 2009-2010, Feinheit GmbH and contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FeinCMS 1.8.4 documentation

Administration interfaces

FeinCMS provides two ModelAdmin classes, ItemEditor,
and TreeEditor. Their purpose and
their customization hooks are briefly discussed here.

The tree editor

	
class feincms.admin.tree_editor.TreeEditor

	

The tree editor replaces the standard change list interface with a collapsible
item tree. The model must be registered with django-mptt [http://github.com/django-mptt/django-mptt/]
for this to work.

[image: _images/tree_editor.png]
Usage is as follows:

from django.db import models
from mptt.fields import TreeForeignKey
from mptt.models import MPTTModel

class YourModel(MPTTModel):
 # model field definitions

 parent = TreeForeignKey('self', null=True, blank=True, related_name='children')

 class Meta:
 ordering = ['tree_id', 'lft'] # The TreeEditor needs this ordering definition

And inside your admin.py file:

from django.contrib import admin
from feincms.admin import tree_editor
from yourapp.models import YourModel

class YourModelAdmin(tree_editor.TreeEditor):
 pass

admin.site.register(YourModel, YourModelAdmin)

All standard ModelAdmin attributes such as
ModelAdmin.list_display, ModelAdmin.list_editable,
ModelAdmin.list_filter work as normally. The only exception to this
rule is the column showing the tree structure (the second column in the image).
There, we always show the value of Model.__str__ currently.

AJAX checkboxes

The tree editor allows you to define boolean columns which let the website
administrator change the value of the boolean using a simple click on the icon.
These boolean columns can be aware of the tree structure. For example, if an object’s
active flag influences the state of its descendants, the tree editor interface
is able to show not only the state of the modified element, but also the state of
all its descendants without having to reload the page.

Currently, documentation for this feature is not available yet. You can take a
look at the implementation of the is_visible and in_navigation columns of
the page editor however.

Usage:

from django.contrib import admin
from feincms.admin import tree_editor
import mptt

class Category(models.Model):
 active = models.BooleanField()
 name = models.CharField(...)
 parent = models.ForeignKey('self', blank=True, null=True)

 # ...
mptt.register(Category)

class CategoryAdmin(tree_editor.TreeEditor):
 list_display = ('__str__', 'active_toggle')
 active_toggle = tree_editor.ajax_editable_boolean('active', _('active'))

The item editor

	
class feincms.admin.item_editor.ItemEditor

	

The tabbed interface below is used to edit content and other properties of the
edited object. A tab is shown for every region of the template or element,
depending on whether templates are activated for the object in question [1].

Here’s a screenshot of a content editing pane. The media file content is
collapsed currently. New items can be added using the control bar at the bottom,
and all content blocks can be reordered using drag and drop:

[image: _images/item_editor_content.png]

	[1]	Templates are required for the page module; blog entries managed through
the item editor probably won’t have a use for them.

Customizing the item editor

New in version 1.2.0.

	The ItemEditor now plays nicely with
standard Django fieldsets; the content-editor is rendered as a
replacement for a fieldset with the placeholder name matching
FEINCMS_CONTENT_FIELDSET_NAME. If no
such fieldset is present, one is inserted at the top automatically. If you
wish to customise the location of the content-editor, simple include this
fieldset at the desired location:

from feincms.admin.item_editor import ItemEditor, FEINCMS_CONTENT_FIELDSET

class MyAdmin(ItemEditor):
 fieldsets = (
 ('Important things', {'fields': ('title', 'slug', 'etc')}),
 FEINCMS_CONTENT_FIELDSET,
 ('Less important things',
 {
 'fields': ('copyright', 'soforth'),
 'classes': ('collapse',)
 }
)
)

Customizing the individual content type forms

Customizing the individual content type editors is easily possible through four
settings on the content type model itself:

	feincms_item_editor_context_processors:

A list of callables using which you may add additional values to the item
editor templates.

	feincms_item_editor_form:

You can specify the base class which should be used for the content type
model. The default value is django.forms.ModelForm. If you want
to customize the form, chances are it is a better idea to set
feincms_item_editor_inline instead.

	feincms_item_editor_includes:

If you need additional JavaScript or CSS files or need to perform additional
initialization on your content type forms, you can specify template fragments
which are included in predefined places into the item editor.

Currently, the only include region available is head:

class ContentType(models.Model):
 feincms_item_editor_includes = {
 'head': ['content/init.html'],
 }

 # ...

If you need to execute additional Javascript, for example to add a TinyMCE instance,
it is recommended to add the initialization functions to the
contentblock_init_handlers array, because the initialization needs to be
performed not only on page load, but also when adding new content blocks. Please
note that these functions will be called several times, also several times
on the same content types. It is your responsibility to ensure that the handlers
aren’t attached several times if this would be harmful.

Additionally, several content types do not support being dragged. Rich text
editors such as TinyMCE react badly to being dragged around - they are still
visible, but the content disappears and nothing is clickable anymore. Because
of this you might want to run routines before and after moving content types
around. This is achieved by adding your JavaScript functions to
the contentblock_move_handlers.poorify array for handlers to be executed
before moving and contentblock_move_handlers.richify for handlers to be
executed after moving. Please note that the item editor executes all handlers
on every drag and drop, it is your responsibility to ensure that code is
only executed if it has to.

Take a look at the richtext item editor include files to understand how
this should be done.

	feincms_item_editor_inline:

New in version 1.4.0.

This can be used to override the InlineModelAdmin class used for the
content type. The custom inline should inherit from FeinCMSInline
or be configured the same way.

If you override fieldsets or fields you must include region and
ordering even though they aren’t shown in the administration
interface.

Putting it all together

It is possible to build a limited, but fully functional page CMS administration
interface using only the following code (urls.py and views.py are
missing):

models.py:

from django.db import models
from mptt.models import MPTTModel
from feincms.models import create_base_model

class Page(create_base_model(MPTTModel)):
 active = models.BooleanField(default=True)
 title = models.CharField(max_length=100)
 slug = models.SlugField()

 parent = models.ForeignKey('self', blank=True, null=True, related_name='children')

 def get_absolute_url(self):
 if self.parent_id:
 return u'%s%s/' % (self.parent.get_absolute_url(), self.slug)
 return u'/%s/' % self.slug

admin.py:

from django.contrib import admin
from feincms.admin import item_editor, tree_editor
from myapp.models import Page

class PageAdmin(item_editor.ItemEditor, tree_editor.TreeEditor):
 fieldsets = [
 (None, {
 'fields': ['active', 'title', 'slug'],
 }),
 item_editor.FEINCMS_CONTENT_FIELDSET,
]
 list_display = ['active', 'title']
 prepopulated_fields = {'slug': ('title',)}
 raw_id_fields = ['parent']
 search_fields = ['title', 'slug']

admin.site.register(Page, PageAdmin)

For a more complete (but also more verbose) implementation, have a look
at the files inside feincms/module/page/.

 Copyright 2009-2010, Feinheit GmbH and contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FeinCMS 1.8.4 documentation

Integrating 3rd party apps into your site

With FeinCMS come a set of standard views which you might want to check
out before starting to write your own.

Default page handler

The default CMS handler view is feincms.views.cbv.handler. You can
add the following as last line in your urls.py to make a catch-all
for any pages which were not matched before:

from feincms.views.cbv.views import Handler
handler = Handler.as_view()

urlpatterns += patterns('',
 url(r'^$', handler, name='feincms_home'),
 url(r'^(.*)/$', handler, name='feincms_handler'),
)

Note that this default handler can also take a keyword parameter path
to specify which url to render. You can use that functionality to
implement a default page by adding another entry to your urls.py:

from feincms.views.cbv.views import Handler
handler = Handler.as_view()

...
 url(r'^$', handler, {'path': '/rootpage'},
 name='feincms_home')
...

Please note that it’s easier to include feincms.urls at the bottom
of your own URL patterns like this:

...

urlpatterns += patterns('',
 url(r'', include('feincms.urls')),
)

The URLconf entry names feincms_home and feincms_handler must
both exist somewhere in your project. The standard feincms.urls
contains definitions for both. If you want to provide your own view,
it’s your responsability to create correct URLconf entries.

Generic and custom views

If you use FeinCMS to manage your site, chances are that you still want
to use generic and/or custom views for certain parts. You probably still need a
feincms_page object inside your template to generate the navigation and
render regions not managed by the generic views. The best way to ensure
the presence of a feincms_page instance in the template context is
to add feincms.context_processors.add_page_if_missing to your
TEMPLATE_CONTEXT_PROCESSORS setting.

Integrating 3rd party apps

Third party apps such as django-registration can be integrated in the CMS
too. ApplicationContent lets you
delegate a subset of your page tree to a third party application. The only
thing you need is specifying a URLconf file which is used to determine which
pages exist below the integration point.

Adapting the 3rd party application for FeinCMS

The integration mechanism is very flexible. It allows the website
administrator to add the application in multiple places or move the
integration point around at will. Obviously, this flexibility puts
several constraints on the application developer. It is therefore
probable, that you cannot just drop in a 3rd party application and
expect it to work. Modifications of urls.py and the templates
will be required.

The following examples all assume that we want to integrate a news
application into FeinCMS. The
ApplicationContent will
be added to the page at /news/, but that’s not too important really,
because the 3rd party app’s assumption about where it will be integrated
can be too easily violated.

An example urls.py follows:

from django.conf.urls import patterns, include, url
from django.views.generic.detail import DetailView
from django.views.generic.list import ListView
from news.models import Entry

urlpatterns = patterns('',
 url(r'^$', ListView.as_view(
 queryset=Entry.objects.all(),
), name='entry_list'),
 url(r'^(?P<slug>[^/]+)/$', DetailView.as_view(
 queryset=Entry.objects.all(),
), name='entry_detail'),
)

Please note that you should not add the news/ prefix here. You should
not reference this urls.py file anywhere in a include statement.

Registering the 3rd party application with FeinCMS’ ApplicationContent

It’s as simple as that:

from feincms.content.application.models import ApplicationContent
from feincms.module.page.models import Page

Page.create_content_type(ApplicationContent, APPLICATIONS=(
 ('news.urls', 'News application'),
))

Writing the models

Because the URLconf entries entry_list and entry_detail aren’t
reachable through standard means (remember, they aren’t included
anywhere) it’s not possible to use standard reverse calls to
determine the absolute URL of a news entry. FeinCMS provides its own
app_reverse function (see More on reversing URLs for
details) and permalink decorator mimicking the interface of
Django’s standard functionality:

from django.db import models
from feincms.content.application import models as app_models

class Entry(models.Model):
 title = models.CharField(max_length=200)
 slug = models.SlugField()
 description = models.TextField(blank=True)

 class Meta:
 ordering = ['-id']

 def __str__(self):
 return self.title

 @app_models.permalink
 def get_absolute_url(self):
 return ('entry_detail', 'news.urls', (), {
 'slug': self.slug,
 })

The only difference is that you do not only have to specify the view name
(entry_detail) but also the URLconf file (news.urls) for this
specific permalink decorator. The URLconf string must correspond to the
specification used in the APPLICATIONS list in the create_content_type
call.

Note

Previous FeinCMS versions only provided a monkey patched reverse
method with a slightly different syntax for reversing URLs. This
behavior is still available and as of now (FeinCMS 1.5) still active
by default. It is recommended to start using the new way right now
and add FEINCMS_REVERSE_MONKEY_PATCH = False to your settings file.

Returning content from views

Three different types of return values can be handled by the application
content code:

	Unicode data (e.g. the return value of render_to_string)

	HttpResponse instances

	A tuple consisting of two elements: A template instance, template name or list
and a context dict. More on this later under
Letting the application content use the full power of Django’s template inheritance

Unicode data is inserted verbatim into the output. HttpResponse instances
are returned directly to the client under the following circumstances:

	The HTTP status code differs from 200 OK (Please note that 404 errors may
be ignored if more than one content type with a process method exists on
the current CMS page.)

	The resource was requested by XmlHttpRequest (that is, request.is_ajax
returns True)

	The response was explicitly marked as standalone by the
feincms.views.decorators.standalone() view decorator
(made easier by mixing-in feincms.module.mixins.StandaloneView)

	The mimetype of the response was not text/plain or text/html

Otherwise, the content of the response is unpacked and inserted into the
CMS output as unicode data as if the view returned the content directly, not
wrapped into a HttpResponse instance.

If you want to customize this behavior, provide your own subclass of
ApplicationContent with an overridden send_directly method. The
described behavior is only a sane default and might not fit everyone’s
use case.

Note

The string or response returned should not contain <html> or <body>
tags because this would invalidate the HTML code returned by FeinCMS.

Letting the application content use the full power of Django’s template inheritance

If returning a simple unicode string is not enough and you’d like to modify
different blocks in the base template, you have to ensure two things:

	Use the class-based page handler. This is already the default if you include
feincms.urls or feincms.views.cbv.urls.

	Make sure your application views use the third return value type described
above: A tuple consisting of a template and a context dict.

The news application views would then look as follows. Please note the absence
of any template rendering calls:

views.py:

from django.shortcuts import get_object_or_404
from news.models import Entry

def entry_list(request):
 # Pagination should probably be added here
 return 'news/entry_list.html', {'object_list': Entry.objects.all()}

def entry_detail(request, slug):
 return 'news/entry_detail', {'object': get_object_or_404(Entry, slug=slug)}

urls.py:

from django.conf.urls import patterns, include, url

urlpatterns = patterns('news.views',
 url(r'^$', 'entry_list', name='entry_list'),
 url(r'^(?P<slug>[^/]+)/$', 'entry_detail', name='entry_detail'),
)

The two templates referenced, news/entry_list.html and
news/entry_detail.html, should now extend a base template. The recommended
notation is as follows:

{% extends feincms_page.template.path|default:"base.html" %}

{% block ... %}
{# more content snipped #}

This ensures that the the selected CMS template is still used when rendering
content.

Note

Older versions of FeinCMS only offered fragments for a similar purpose. They
are still suported, but it’s recommended you switch over to this style instead.

Warning

If you add two application content blocks on the same page and both use this
mechanism, the later ‘wins’.

More on reversing URLs

Application content-aware URL reversing is available both for Python and
Django template code.

The function works almost like Django’s own reverse() method except
that it resolves URLs from application contents. The second argument,
urlconf, has to correspond to the URLconf parameter passed in the
APPLICATIONS list to Page.create_content_type:

from feincms.content.application.models import app_reverse
app_reverse('mymodel-detail', 'myapp.urls', args=...)

or:

app_reverse('mymodel-detail', 'myapp.urls', kwargs=...)

The template tag has to be loaded from the applicationcontent_tags
template tag library first:

{% load applicationcontent_tags %}
{% app_reverse "mymodel_detail" "myapp.urls" arg1 arg2 %}

or:

{% load applicationcontent_tags %}
{% app_reverse "mymodel_detail" "myapp.urls" name1=value1 name2=value2 %}

Storing the URL in a context variable is supported too:

{% load applicationcontent_tags %}
{% app_reverse "mymodel_detail" "myapp.urls" arg1 arg2 as url %}

Inside the app (in this case, inside the views defined in myapp.urls),
you can also pass the current request instance instead of the URLconf
name.

If an application has been added several times to the same page tree,
app_reverse tries to find the best match. The logic is contained inside
ApplicationContent.closest_match, and can be overridden by subclassing
the application content type. The default implementation only takes the current
language into account, which is mostly helpful when you’re using the
translations page extension.

Additional customization possibilities

The ApplicationContent offers additional customization possibilites for those who
need them. All of these must be specified in the APPLICATIONS argument to
create_content_type.

	urls: Making it easier to swap the URLconf file:

You might want to use logical names instead of URLconf paths when you create
your content types, so that the ApplicationContent apps aren’t tied to
a particular urls.py file. This is useful if you want to override a few
URLs from a 3rd party application, f.e. replace registration.urls with
yourapp.registration_urls:

Page.create_content_type(ApplicationContent, APPLICATIONS=(
 ('registration', 'Account creation and management', {
 'urls': 'yourapp.registration_urls',
 }),
)

	admin_fields: Adding more fields to the application content interface:

Some application contents might require additional configuration parameters
which should be modifyable by the website administrator. admin_fields to
the rescue!

def registration_admin_fields(form, *args, **kwargs):
 return {
 'exclusive_subpages': forms.BooleanField(
 label=_('Exclusive subpages'),
 required=False,
 initial=form.instance.parameters.get('exclusive_subpages', True),
 help_text=_('Exclude everything other than the application\'s content when rendering subpages.'),
),
 }

Page.create_content_type(ApplicationContent, APPLICATIONS=(
 ('registration', 'Account creation and management', {
 'urls': 'yourapp.registration_urls',
 'admin_fields': registration_admin_fields,
 }),
)

The form fields will only be visible after saving the ApplicationContent
for the first time. They are stored inside a JSON-encoded field. The values
are added to the template context indirectly when rendering the main template
by adding them to request._feincms_extra_context.

	path_mapper: Customize URL processing by altering the perceived path of the page:

The applicaton content uses the remainder of the URL to resolve the view inside
the 3rd party application by default. This works fine most of the time, sometimes
you want to alter the perceived path without modifying the URLconf file itself.

If provided, the path_mapper receives the three arguments, request.path,
the URL of the current page and all application parameters, and must return
a tuple consisting of the path to resolve inside the application content and
the path the current page is supposed to have.

This path_mapper function can be used to do things like rewrite the path so
you can pretend that an app is anchored deeper than it actually is (e.g.
/path/to/page is treated as “/<slug>/” using a parameter value rather
than “/” by the embedded app)

	view_wrapper: Decorate every view inside the application content:

If the customization possibilites above aren’t sufficient, view_wrapper
can be used to decorate each and every view inside the application content
with your own function. The function specified with view_wrapper receives
an additional parameters besides the view itself and any arguments or
keyword arguments the URLconf contains, appcontent_parameters containing
the application content configuration.

Letting 3rd party apps define navigation entries

Short answer: You need the feincms.module.page.extensions.navigation
extension module. Activate it like this:

Page.register_extensions('feincms.module.page.extensions.navigation')

Please note however, that this call needs to come after all
NavigationExtension subclasses have been processed, because otherwise they
will not be available for selection in the page administration! (Yes, this is
lame and yes, this is going to change as soon as we find a
better solution. In the meantime, stick your subclass definition before
the register_extensions call.)

Because the use cases for extended navigations are so different, FeinCMS
does not go to great lengths trying to cover them all. What it does though
is to let you execute code to filter, replace or add navigation entries when
generating a list of navigation entries.

If you have a blog and you want to display the blog categories as subnavigation
entries, you could do it as follows:

	Create a navigation extension for the blog categories

	Assign this navigation extension to the CMS page where you want these navigation entries to appear

You don’t need to do anything else as long as you use the built-in
feincms_nav template tag – it knows how to handle extended navigations.

from feincms.module.page.extensions.navigation import NavigationExtension, PagePretender

class BlogCategoriesNavigationExtension(NavigationExtension):
 name = _('blog categories')

 def children(self, page, **kwargs):
 for category in Category.objects.all():
 yield PagePretender(
 title=category.name,
 url=category.get_absolute_url(),
)

class PassthroughExtension(NavigationExtension):
 name = 'passthrough extension'

 def children(self, page, **kwargs):
 for p in page.children.in_navigation():
 yield p

Page.register_extensions('feincms.module.page.extensions.navigation')

Note that the objects returned should at least try to mimic a real page so
navigation template tags as siblings_along_path_to and friends continue
to work, ie. at least the following attributes should exist:

title = '(whatever)'
url = '(whatever)'

Attributes that MPTT assumes to exist
parent_id = page.id
tree_id = page.tree_id
level = page.level+1
lft = page.lft
rght = page.rght

 Copyright 2009-2010, Feinheit GmbH and contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FeinCMS 1.8.4 documentation

Media library

The media library module provides a way to store, transform and display files
of arbitrary types.

The following instructions assume, that you use the media library together
with the page module. However, the media library does not depend on any aspect
of the page module – you can use it with any CMS base model.

To activate the media library and use it together with the page module, it is
best to first get the page module working with a few content types. Afterwards,
add feincms.module.medialibrary to your INSTALLED_APPS setting, and
create a content type for a media file as follows:

from feincms.module.page.models import Page
from feincms.content.medialibrary.v2 import MediaFileContent

Page.create_content_type(MediaFileContent, TYPE_CHOICES=(
 ('default', _('default')),
 ('lightbox', _('lightbox')),
))

TYPE_CHOICES has nothing to do with file types – it’s about choosing
the presentation type for a certain media file, f.e. whether the media file
should be presented inline, in a lightbox, floated, or simply as a download
link.

Configuration

The location and URL of the media library may be configured either by setting
the appropriate variables in your settings.py file or in your CMS defining
module.

The file system path for all media library files is defined using Django’s
MEDIA_ROOT setting and FeinCMS’ FEINCMS_MEDIALIBRARY_UPLOAD_TO setting
which defaults to medialibrary/%Y/%m/.

These settings can also be changed programmatically using
MediaFile.reconfigure(upload_to=..., storage=...)

Rendering media file contents

A set of recognition functions will be run on the file name to determine the file
type. Using combinations of the name and type, the default render method tries to
find a template for rendering the
MediaFileContent.

The default set of pre-defined content types and recognition functions is:

MediaFileBase.register_filetypes(
 ('image', _('Image'), lambda f: re.compile(r'\.(bmp|jpe?g|jp2|jxr|gif|png|tiff?)$', re.IGNORECASE).search(f)),
 ('video', _('Video'), lambda f: re.compile(r'\.(mov|m[14]v|mp4|avi|mpe?g|qt|ogv|wmv)$', re.IGNORECASE).search(f)),
 ('audio', _('Audio'), lambda f: re.compile(r'\.(au|mp3|m4a|wma|oga|ram|wav)$', re.IGNORECASE).search(f)),
 ('pdf', _('PDF document'), lambda f: f.lower().endswith('.pdf')),
 ('swf', _('Flash'), lambda f: f.lower().endswith('.swf')),
 ('txt', _('Text'), lambda f: f.lower().endswith('.txt')),
 ('rtf', _('Rich Text'), lambda f: f.lower().endswith('.rtf')),
 ('zip', _('Zip archive'), lambda f: f.lower().endswith('.zip')),
 ('doc', _('Microsoft Word'), lambda f: re.compile(r'\.docx?$', re.IGNORECASE).search(f)),
 ('xls', _('Microsoft Excel'), lambda f: re.compile(r'\.xlsx?$', re.IGNORECASE).search(f)),
 ('ppt', _('Microsoft PowerPoint'), lambda f: re.compile(r'\.pptx?$', re.IGNORECASE).search(f)),
 ('other', _('Binary'), lambda f: True), # Must be last
)

You can add to that set by calling MediaFile.register_filetypes() with your new
file types similar to the above.

If we’ve got an example file 2009/06/foobar.jpg and a presentation type of
inline, the templates tried to render the media file are the following:

	content/mediafile/image_inline.html

	content/mediafile/image.html

	content/mediafile/inline.html

	content/mediafile/default.html

You are of course free to do with the file what you want inside the template,
for example a thumbnail and a lightbox version of the image file, and put everything
into an element that’s floated to the left.

Media file metadata

Sometimes, just storing media files is not enough. You’ve got captions and
copyrights which you’d like to store alongside the media file. This media
library allows that. The caption may even be translated into different
languages. This is most often not necessary or does not apply to copyrights,
therefore the copyright can only be entered once, not once per language.

The default image template content/mediafile/image.html demonstrates how
the values of those fields can be retrieved and used.

Using the media library in your own apps and content types

There are a few helpers that allow you to have a nice raw_id selector and
thumbnail preview in your own apps and content types that have a ForeignKey to
MediaFile.

To have a thumbnail preview in your ModelAdmin and Inline class:

from feincms.module.medialibrary.fields import MediaFileForeignKey

class ImageForProject(models.Model):
 project = models.ForeignKey(Project)
 mediafile = MediaFileForeignKey(MediaFile, related_name='+',
 limit_choices_to={'type': 'image'})

For the maginfying-glass select widget in your content type inherit your inline
from FeinCMSInline:

class MyContentInline(FeinCMSInline):
 raw_id_fields = ('mediafile',)

class MyContent(models.Model):
 feincms_item_editor_inline = MyContentInline

 Copyright 2009-2010, Feinheit GmbH and contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FeinCMS 1.8.4 documentation

Template tags

General template tags

To use the template tags described in this section, you need to load
the feincms_tags template tag library:

{% load feincms_tags %}

	
feincms_render_region:

	

	
feincms_render_content:

	Some content types will need the request object to work properly. Contact forms
will need to access POSTed data, a Google Map content type needs to use a
different API key depending on the current domain etc. This means you should add
django.core.context_processors.request to your TEMPLATE_CONTEXT_PROCESSORS.

These two template tags allow you to pass the request from the template to the
content type. feincms_render_content() allows you to surround the individual
content blocks with custom markup, feincms_render_region() simply concatenates
the output of all content blocks:

 {% load feincms_tags %}

 {% feincms_render_region feincms_page "main" request %}

or::

 {% load feincms_tags %}

 {% for content in feincms_page.content.main %}
 <div class="block">
 {% feincms_render_content content request %}
 </div>
 {% endfor %}

Both template tags add the current rendering context to the render method
call too. This means that you can access both the request and the current
context inside your content type as follows:

class MyContentType(models.Model):
 # class Meta etc...

 def render(self, **kwargs):
 request = kwargs.get('request')
 context = kwargs.get('context')

	
feincms_frontend_editing:

	

Page module-specific template tags

All page module-specific template tags are contained in feincms_page_tags:

{% load feincms_page_tags %}

	
feincms_nav:

	Return a list of pages to be used for the navigation

level: 1 = toplevel, 2 = sublevel, 3 = sub-sublevel
depth: 1 = only one level, 2 = subpages too

If you set depth to something else than 1, you might want to look into
the tree_info template tag from the mptt_tags library.

Example:

{% load feincms_page_tags %}

{% feincms_nav feincms_page level=2 depth=1 as sublevel %}
{% for p in sublevel %}
 {{ p.title }}
{% endfor %}

	
siblings_along_path_to:

	This is a filter designed to work in close conjunction with the
feincms_nav template tag describe above to build a
navigation tree following the path to the current page.

Example:

{% feincms_nav feincms_page level=1 depth=3 as navitems %}
{% with navitems|siblings_along_path_to:feincms_page as navtree %}
 {% recursetree navtree %}
 * {{ node.short_title }}

 {% if children %}
 <div style="margin-left: 20px">{{ children }}</div>
 {% endif %}
 {% endrecursetree %}
{% endwith %}

For helper function converting a tree of pages into an HTML
representation please see the mptt_tags library’s tree_info
and recursetree.

	
feincms_parentlink:

	Return a link to an ancestor of the passed page.

You’d determine the link to the top level ancestor of the current page
like this:

{% load feincms_page_tags %}

{% feincms_parentlink of feincms_page level=1 %}

Please note that this is not the same as simply getting the URL of the
parent of the current page.

	
feincms_languagelinks:

	This template tag needs the translations extension.

Arguments can be any combination of:

	all or existing: Return all languages or only those where a translation exists

	excludecurrent: Excludes the item in the current language from the list

The default behavior is to return an entry for all languages including the
current language.

Example:

{% load feincms_page_tags %}

{% feincms_languagelinks for feincms_page as links all,excludecurrent %}
{% for key, name, link in links %}
 {% trans name %}
{% endfor %}

	
feincms_translatedpage:

	This template tag needs the translations extension.

Returns the requested translation of the page if it exists. If the language
argument is omitted the primary language will be returned (the first language
specified in settings.LANGUAGES):

{% load feincms_page_tags %}

{% feincms_translatedpage for feincms_page as feincms_transpage language=en %}
{% feincms_translatedpage for feincms_page as originalpage %}
{% feincms_translatedpage for some_page as translatedpage language=feincms_page.language %}

	
feincms_translatedpage_or_base:

	This template tag needs the translations extensions.

Similar in function and arguments to feincms_translatedpage, but if no translation
for the requested language exists, the base language page will be returned:

{% load feincms_page_tags %}

{% feincms_translatedpage_or_base for some_page as some_transpage language=gr %}

	
feincms_breadcrumbs:

	{% load feincms_page_tags %}

{% feincms_breadcrumbs feincms_page %}

	
is_parent_of:

	{% load feincms_page_tags %}

{% if page1|is_parent_of:page2 %}
 page1 is a parent of page2
{% endif %}

	
is_equal_or_parent_of:

	{% load feincms_page_tags %}

{% feincms_nav feincms_page level=1 as main %}
{% for entry in main %}
 <a {% if entry|is_equal_or_parent_of:feincms_page %}class="mark"{% endif %}
 href="{{ entry.get_absolute_url }}">{{ entry.title }}
{% endfor %}

Application content template tags

	
app_reverse:

	Returns an absolute URL for applications integrated with ApplicationContent

The tag mostly works the same way as Django’s own {% url %} tag:

{% load applicationcontent_tags %}
{% app_reverse "mymodel_detail" "myapp.urls" arg1 arg2 %}

or:

{% load applicationcontent_tags %}
{% app_reverse "mymodel_detail" "myapp.urls" name1=value1 name2=value2 %}

The first argument is a path to a view. The second argument is the URLconf
under which this app is known to the ApplicationContent.

Other arguments are space-separated values that will be filled in place of
positional and keyword arguments in the URL. Don’t mix positional and
keyword arguments.

If you want to store the URL in a variable instead of showing it right away
you can do so too:

{% app_reverse "mymodel_detail" "myapp.urls" arg1 arg2 as url %}

	
fragment:

	

	
get_fragment:

	Don’t use those, read up on Letting the application content use the full power of Django’s template inheritance
instead.

 Copyright 2009-2010, Feinheit GmbH and contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FeinCMS 1.8.4 documentation

Database migration support for FeinCMS with South

If you don’t know what South [http://south.aeracode.org/] is you should probably go and read about
it right now!

FeinCMS itself does not come with any migrations. It does not have to: Its
core models haven’t changed for several versions now. This does not mean South
isn’t supported! You are free to use South to manage FeinCMS’ models which
is a very useful technique especially if you are using Page extension modules.

The following steps should be sufficient to get up and running with South
in your project:

	Put a copy of South somewhere on your PYTHONPATH, with pip, hg
or whatever pleases you most.

	Add 'south' to INSTALLED_APPS.

	Create a new folder in your app with an empty __init__.py file inside,
e.g. yourapp/migrate/.

	Add the following configuration variable to your settings.py:

SOUTH_MIGRATION_MODULES = {
 'page': 'yourapp.migrate.page',
 'medialibrary': 'yourapp.migrate.medialibrary', # if you are using the medialibrary
 # which comes with FeinCMS
 }

	Run ./manage.py convert_to_south page and ./manage.py convert_to_south medialibrary

	That’s it!

Warning

You must not use migrations as folder name for the FeinCMS
migrations, otherwise South will get confused.

 Copyright 2009-2010, Feinheit GmbH and contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FeinCMS 1.8.4 documentation

Versioning database content with django-reversion

The following steps should be followed to integrate the page module
with django-reversion [https://github.com/etianen/django-reversion]:

	Add 'reversion' to the list of installed applications.

	Add 'reversion.middleware.RevisionMiddleware' to MIDDLEWARE_CLASSES.

	Call Page.register_with_reversion() after all content types have been
created (after all create_content_type invocations).

Now, you need to create your own model admin subclass inheriting from both
FeinCMS’ PageAdmin and from reversions VersionAdmin:

from django.contrib import admin
from feincms.module.page.models import Page, PageAdmin
from reversion.admin import VersionAdmin

admin.site.unregister(Page)

class VersionedPageAdmin(PageAdmin, VersionAdmin):
 pass

admin.site.register(Page, VersionedPageAdmin)

The VersionedPageAdmin does not look like the ItemEditor – it’s
just raw Django inlines, without any additional JavaScript. Patches are
welcome, but the basic functionality needed for versioning page content
is there.

Finally, you should ensure that initial revisions are created using
django-reversion‘s createinitialrevisions management command.

Note

You should ensure that you’re using a reversion release which is
compatible with your installed Django version. The reversion documentation
contains an up-to-date list of compatible releases.

The reversion support in FeinCMS requires at least django-reversion 1.6.

 Copyright 2009-2010, Feinheit GmbH and contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FeinCMS 1.8.4 documentation

Advanced topics

This section is targeted at more advanced users of FeinCMS. It goes into
details which are not relevant for you if you only want to use the
page module or the media library on your site.

However, if you want to understand the inner workings of the CMS, the
design considerations and how to optimize your code, this section is for you.

	feincms.models.Base — CMS base class

	feincms.utils — General utilities

	Software design considerations
	About rich text editors

	Content blocks

	Performance considerations
	Denormalization

	Caching

 Copyright 2009-2010, Feinheit GmbH and contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FeinCMS 1.8.4 documentation

 	Advanced topics

feincms.models.Base — CMS base class

This is the base class which you must inherit if you’d like to use the CMS to
manage content with the ItemEditor.

	
Base.register_templates(*templates)

	

	
Base.register_regions(*regions)

	

	
Base.content

	Beware not to name subclass field content as this will overshadow ContentProxy and you will
not be able to reference ContentProxy.

	
Base.create_content_type(model, regions=None[, **kwargs])

	

	
Base.content_type_for(model)

	

	
Base.copy_content_from(obj)

	

	
Base.replace_content_with(obj)

	

	
Base.append_content_from(obj)

	

 Copyright 2009-2010, Feinheit GmbH and contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FeinCMS 1.8.4 documentation

 	Advanced topics

feincms.utils — General utilities

	
feincms.utils.get_object(path[, fail_silently])

	Helper function which can be used to import a python object. path
should be the absolute dotted path to the object. You can optionally pass
fail_silently=True if the function should not raise an Exception
in case of a failure to import the object:

MyClass = get_object('module.MyClass')

myfunc = get_object('anothermodule.module2.my_function', fail_silently=True)

	
feincms.utils.collect_dict_values(data)

	Converts a list of 2-tuples to a dict.

 Copyright 2009-2010, Feinheit GmbH and contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FeinCMS 1.8.4 documentation

 	Advanced topics

Software design considerations

These are assorted ramblings copy-pasted from various emails.

About rich text editors

We have been
struggling with rich text editors for a long time. To be honest, I do
not think it was a good idea to add that many features to the rich
text editor. Resizing images uploaded into a rich text editor is a
real pain, and what if you’d like to reuse these images or display
them using a lightbox script or something similar? You have to resort
to writing loads of JavaScript code which will only work on one
browser. You cannot really filter the HTML code generated by the user
to kick out ugly HTML code generated by copy-pasting from word. The
user will upload 10mb JPEGs and resize them to 50x50 pixels by
himself.

All of this convinced me that offering the user a rich text editor
with too much capabilities is a really bad idea. The rich text editor
in FeinCMS only has bold, italic, bullets, link and headlines
activated (and the HTML code button, because that’s sort of inevitable
– sometimes the rich text editor messes up and you cannot fix it
other than going directly into the HTML code. Plus, if someone really
knows what he’s doing, I’d still like to give him the power to shot
his own foot).

If this does not seem convincing you can always add your own rich text
content type with a different configuration (or just override the rich
text editor initialization template in your own project). We do not want
to force our world view on you, it’s just that we think that in this
case, more choice has the bigger potential to hurt than to help.

Content blocks

Images and other media files are inserted via objects;
the user can only select a file and a display mode (f.e. float/block
for images or something...). A page’s content could look like this:

	Rich Text

	Floated image

	Rich Text

	YouTube Video Link, embedding code is automatically generated from the link

	Rich Text

It’s of course easier for the user to start with only a single rich
text field, but I think that the user already has too much confusing
possibilities with an enhanced rich text editor. Once the user grasps
the concept of content blocks which can be freely added, removed and
reordered using drag/drop, I’d say it’s much easier to administer the
content of a webpage. Plus, the content blocks can have their own
displaying and updating logic; implementing dynamic content inside the
CMS is not hard anymore, on the contrary. Since content blocks are
Django models, you can do anything you want inside them.

 Copyright 2009-2010, Feinheit GmbH and contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FeinCMS 1.8.4 documentation

 	Advanced topics

Performance considerations

While FeinCMS in its raw form is perfectly capable of serving out a medium
sized site, more complicated setups quickly lead to death by database load.
As the complexity of your pages grows, so do the number of database queries
needed to build page content on each and every request.

It is therefore a good idea to keep an eye open for excessive database queries
and to try to avoid them.

Denormalization

FeinCMS comes bundled with the “ct_tracker” extension that will reduce the
number of database queries needed by keeping some bookkeeping information
duplicated in the base type.

Caching

Caching rendered page fragments is probably the most efficient way of
reducing database accesses in your FeinCMS site.
An important consideration in the design of your site’s templates is which
areas of your pages depend on which variables. FeinCMS supplies a number
of helper methods and variables, ready to be used in your templates.

Here’s an (incomplete) list of variables to use in {% cache %} blocks [1]:

	
	feincms_page.cache_key – a string describing the current page.

	Depending on the extensions loaded, this varies with the page,
the page’s modification date, its language, etc. This is always
a safe bet to use on page specific fragments.

	
	LANGUAGE_CODE – even if two requests are asking for the same page,

	the html code rendered might differ in translated elements in the
navigation or elsewhere. If the fragment varies on language, include
LANGUAGE_CODE in the cache specifier.

	
	request.user.id – different users might be allowed to see different

	views of the site. Add request.user.id to the cache specifier if
this is the case.

	[1]	Please see the django documentation for detailed
description of the {% cache %} template tag.

 Copyright 2009-2010, Feinheit GmbH and contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FeinCMS 1.8.4 documentation

Frequently Asked Questions

This FAQ serves two purposes. Firstly, it does what a FAQ generally does –
answer frequently asked questions. Secondly, it is also a place to dump
fragments of documentation which haven’t matured enough to be moved into
their own documentation file.

Should I extend the builtin modules and contents, or should I write my own?

The answer is, as often, the nearly useless “It depends”. The built-in modules
serve two purposes: On one hand, they should be ready to use and demonstrate
the power of FeinCMS. On the other hand, they should be simple enough to serve
as examples for you if you want to build your own CMS-like system using the
tools provided by FeinCMS.

If a proposed feature greatly enhances the modules’ or content types’
abilities without adding heaps of code, chances are pretty good that it will
be accepted into FeinCMS core. Anyway, the tools included should be so easy
to use that you might still want to build your own page CMS, if your needs
are very different from those of the original authors. If you don’t like
monkey patching at all, or if the list of extensions you want to use grows
too big, it might be time to reconsider whether you really want to use the
extension mechanism or if it might not be easier to start freshly, only
using the editor admin classes, feincms.models.Base and maybe parts of the
included PageManager...

I run syncdb and get a message about missing columns in the page table

You enabled the page module (added feincms.module.page to
INSTALLED_APPS), run syncdb, and afterwards registered a few
extensions. The extensions you activated
(datepublisher and
translations) add new fields to
the page model, but your first syncdb did not know about them and
therefore did not create the columns for those extensions.

You can either remove the line Page.register_extensions(...) from
your code or drop the page_page table and re-run syncdb. If you want
to keep the pages you’ve already created, you need to figure out the
correct ALTER TABLE statements for your database yourself.

 Copyright 2009-2010, Feinheit GmbH and contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FeinCMS 1.8.4 documentation

Contributing to the development of FeinCMS

Repository branches

The FeinCMS repository on github has several branches. Their purpose and
rewinding policies are described below.

	maint: Maintenance branch for the second-newest version of FeinCMS.

	master: Stable version of FeinCMS.

master and maint are never rebased or rewound.

	next: Upcoming version of FeinCMS. This branch is rarely rebased
if ever, but this might happen. A note will be sent to the official
mailing list whenever next has been rebased.

	pu or feature branches are used for short-lived projects. These
branches aren’t guaranteed to stay around and are not meant to be
deployed into production environments.

 Copyright 2009-2010, Feinheit GmbH and contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FeinCMS 1.8.4 documentation

FeinCMS Deprecation Timeline

This document outlines when various pieces of FeinCMS will be removed or
altered in backward incompatible way. Before a feature is removed, a warning
will be issued for at least two releases.

1.6

	The value of FEINCMS_REVERSE_MONKEY_PATCH has been changed to False.

	Deprecated page manager methods have been removed (page_for_path_or_404,
for_request_or_404, best_match_for_request, from_request) -
Page.objects.for_request(), Page.objects.page_for_path and
Page.objects.best_match_for_path should cover all use cases.

	Deprecated page methods have been removed (active_children,
active_children_in_navigation, get_siblings_and_self)

	Request and response processors have to be imported from
feincms.module.page.processors. Additionally, they must be registered
individually by using register_request_processor and
register_response_processor.

	Prefilled attributes have been removed. Use Django’s prefetch_related
or feincms.utils.queryset_transform instead.

	feincms.views.base has been moved to feincms.views.legacy. Use
feincms.views.cbv instead.

	FEINCMS_FRONTEND_EDITING‘s default has been changed to False.

	The code in feincms.module.page.models has been split up. The admin
classes are in feincms.module.page.modeladmin, the forms in
feincms.module.page.forms now. Analogous changes have been made
to feincms.module.medialibrary.models.

1.7

	The monkeypatch to make Django’s django.core.urlresolvers.reverse()
applicationcontent-aware will be removed. Use
feincms.content.application.models.app_reverse() and the corresponding
template tag instead.

	The module feincms.content.medialibrary.models will be replaced by
the contents of feincms.content.medialibrary.v2. The latter uses
Django’s raw_id_fields support instead of reimplementing it badly.

	The legacy views inside feincms.views.legacy will be removed.

1.8

	The module feincms.admin.editor will be removed. The model admin classes
have been available in feincms.admin.item_editor and
feincms.admin.tree_editor since FeinCMS v1.0.

	Cleansing the HTML of a rich text content will still be possible, but the
cleansing module feincms.utils.html.cleanse will be removed. When
creating a rich text content, the cleanse argument must be a callable
and cannot be True anymore. The cleansing function has been moved into
its own package,
feincms-cleanse [http://pypi.python.org/pypi/feincms-cleanse].

	Registering extensions using shorthand notation will be not be possible in
FeinCMS v1.8 anymore. Use the following method instead:

Page.register_extensions(
 'feincms.module.page.extensions.navigation',
 'feincms.module.extensions.ct_tracker',
)

	feincms_navigation and feincms_navigation_extended will be removed.
Their functionality is provided by feincms_nav instead.

	The function-based generic views aren’t available in Django after v1.4
anymore. feincms.views.generic and
feincms.views.decorators.add_page_to_extra_context() will be removed
as well.

	The module feincms.content.medialibrary.v2, which is only an alias for
feincms.content.medialibrary.models starting with FeinCMS v1.7 will be
removed.

	Page.setup_request() does not do anything anymore and will be removed.

1.9

	Fields added through page extensions which haven’t been explicitly added
to the page model admin using modeladmin.add_extension_options will
disappear from the admin interface. The automatic collection of fields
will be removed.

	All extensions should inherit from feincms.extensions.Extension.
Support for register(cls, admin_cls)-style functions will be removed
in FeinCMS v1.9.

 Copyright 2009-2010, Feinheit GmbH and contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FeinCMS 1.8.4 documentation

FeinCMS core

General functions

	
feincms.ensure_completely_loaded(force=False)

	This method ensures all models are completely loaded

FeinCMS requires Django to be completely initialized before proceeding,
because of the extension mechanism and the dynamically created content
types.

For more informations, have a look at issue #23 on github:
http://github.com/feincms/feincms/issues#issue/23

Base models

This is the core of FeinCMS

All models defined here are abstract, which means no tables are created in
the feincms_ namespace.

	
class feincms.models.Base(*args, **kwargs)

	This is the base class for your CMS models. It knows how to create and
manage content types.

	
Base.content

	Instantiate and return a ContentProxy. You can use your own
custom ContentProxy by assigning a different class to the
content_proxy_class member variable.

	
Base.content_proxy_class

	alias of ContentProxy

	
classmethod Base.content_type_for(model)

	Return the concrete content type for an abstract content type:

from feincms.content.video.models import VideoContent
concrete_type = Page.content_type_for(VideoContent)

	
Base.copy_content_from(obj)

	Copy all content blocks over to another CMS base object. (Must be
of the same type, but this is not enforced. It will crash if you
try to copy content from another CMS base type.)

	
classmethod Base.create_content_type(model, regions=None, class_name=None, **kwargs)

	This is the method you’ll use to create concrete content types.

If the CMS base class is page.models.Page, its database table
will be page_page. A concrete content type which is created
from ImageContent will use page_page_imagecontent as its
table.

If you want a content type only available in a subset of regions,
you can pass a list/tuple of region keys as regions. The
content type will only appear in the corresponding tabs in the item
editor.

If you use two content types with the same name in the same module,
name clashes will happen and the content type created first will
shadow all subsequent content types. You can work around it by
specifying the content type class name using the class_name
argument. Please note that this will have an effect on the entries
in django_content_type, on related_name and on the table
name used and should therefore not be changed after running
syncdb for the first time.

Name clashes will also happen if a content type has defined a
relationship and you try to register that content type to more than
one Base model (in different modules). Django will raise an error
when it tries to create the backward relationship. The solution to
that problem is, as shown above, to specify the content type class
name with the class_name argument.

If you register a content type to more than one Base class, it is
recommended to always specify a class_name when registering it
a second time.

You can pass additional keyword arguments to this factory function.
These keyword arguments will be passed on to the concrete content
type, provided that it has a initialize_type classmethod. This
is used f.e. in MediaFileContent to pass a set of possible
media positions (f.e. left, right, centered) through to the content
type.

	
classmethod Base.register_regions(*regions)

	Register a list of regions. Only use this if you do not want to use
multiple templates with this model (read: not use
register_templates):

BlogEntry.register_regions(
 ('main', _('Main content area')),
)

	
classmethod Base.register_templates(*templates)

	Register templates and add a template_key field to the model
for saving the selected template:

Page.register_templates({
 'key': 'base',
 'title': _('Standard template'),
 'path': 'feincms_base.html',
 'regions': (
 ('main', _('Main content area')),
 ('sidebar', _('Sidebar'), 'inherited'),
),
 }, {
 'key': '2col',
 'title': _('Template with two columns'),
 'path': 'feincms_2col.html',
 'regions': (
 ('col1', _('Column one')),
 ('col2', _('Column two')),
 ('sidebar', _('Sidebar'), 'inherited'),
),
 })

	
Base.replace_content_with(obj)

	Replace the content of the current object with content of another.

Deletes all content blocks and calls copy_content_from
afterwards.

	
class feincms.models.ContentProxy(item)

	The ContentProxy is responsible for loading the content blocks for all
regions (including content blocks in inherited regions) and assembling
media definitions.

The content inside a region can be fetched using attribute access with
the region key. This is achieved through a custom __getattr__
implementation.

	
ContentProxy.all_of_type(type_or_tuple)

	Returns all content type instances belonging to the type or types
passed. If you want to filter for several types at the same time, type
must be a tuple.

The content type instances are sorted by their ordering value,
but that isn’t necessarily meaningful if the same content type exists
in different regions.

	
ContentProxy.media

	Collect the media files of all content types of the current object

	
class feincms.models.Region(key, title, *args)

	This class represents a region inside a template. Example regions might be
‘main’ and ‘sidebar’.

	
Region.content_types

	Returns a list of content types registered for this region as a list
of (content type key, beautified content type name) tuples

	
class feincms.models.Template(title, path, regions, key=None, preview_image=None, **kwargs)

	A template is a standard Django template which is used to render a
CMS object, most commonly a page.

	
feincms.models.create_base_model(inherit_from=<class 'django.db.models.base.Model'>)

	This method can be used to create a FeinCMS base model inheriting from
your own custom subclass (f.e. extend MPTTModel). The default is to
extend django.db.models.Model.

 Copyright 2009-2010, Feinheit GmbH and contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FeinCMS 1.8.4 documentation

Admin classes

ItemEditor

	
feincms.templatetags.feincms_admin_tags.is_popup_var()

	Django 1.6 requires _popup=1 for raw id field popups, earlier versions
require pop=1.

The explicit version check is a bit ugly, but works well.

(Wrong parameters aren’t simply ignored by django.contrib.admin, the
change list actively errors out by redirecting to ?e=1)

	
feincms.templatetags.feincms_admin_tags.post_process_fieldsets(fieldset)

	Removes a few fields from FeinCMS admin inlines, those being
id, DELETE and ORDER currently.

Additionally, it ensures that dynamically added fields (i.e.
ApplicationContent‘s admin_fields option) are shown.

TreeEditor

FilterSpec classes for list_filter customization

	
class feincms.admin.filterspecs.CategoryFieldListFilter(f, request, params, model, model_admin, field_path=None)

	Customization of ChoicesFilterSpec which sorts in the user-expected format

my_model_field.category_filter = True

	
class feincms.admin.filterspecs.ParentFieldListFilter(f, request, params, model, model_admin, field_path=None)

	Improved list_filter display for parent Pages by nicely indenting hierarchy

In theory this would work with any mptt model which uses a “title” attribute.

my_model_field.page_parent_filter = True

 Copyright 2009-2010, Feinheit GmbH and contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FeinCMS 1.8.4 documentation

Page module

Models

Request and response processors

	
feincms.module.page.processors.debug_sql_queries_response_processor(verbose=False, file=<open file '<stderr>', mode 'w' at 0x7faed57d61e0>)

	Attaches a handler which prints the query count (and optionally all individual queries
which have been executed) on the console. Does nothing if DEBUG = False.

Example:

from feincms.module.page import models, processors
models.Page.register_response_processor(
 processors.debug_sql_queries_response_processor(verbose=True),
)

	
feincms.module.page.processors.etag_request_processor(page, request)

	Short-circuits the request-response cycle if the ETag matches.

	
feincms.module.page.processors.etag_response_processor(page, request, response)

	Response processor to set an etag header on outgoing responses.
The Page.etag() method must return something valid as etag content
whenever you want an etag header generated.

	
feincms.module.page.processors.extra_context_request_processor(page, request)

	Fills request._feincms_extra_context with a few useful variables.

	
feincms.module.page.processors.frontendediting_request_processor(page, request)

	Sets the frontend editing state in the cookie depending on the
frontend_editing GET parameter and the user’s permissions.

	
feincms.module.page.processors.redirect_request_processor(page, request)

	Returns a HttpResponseRedirect instance if the current page says
a redirect should happen.

Admin classes

Sitemap module

	
class feincms.module.page.sitemap.PageSitemap(navigation_only=False, max_depth=0, changefreq=None, queryset=None, filter=None, extended_navigation=False, page_model='page.Page', *args, **kwargs)

	The PageSitemap can be used to automatically generate sitemap.xml files
for submission to index engines. See http://www.sitemaps.org/ for details.

	
PageSitemap.items()

	Consider all pages that are active and that are not a redirect

	
PageSitemap.priority(obj)

	The priority is staggered according to the depth of the page in
the site. Top level get highest priority, then each level is decreased
by per_level.

Extensions

Page excerpts

Add an excerpt field to the page.

Navigation extensions

Extend or modify the navigation with custom entries.

This extension allows the website administrator to select an extension
which processes, modifies or adds subnavigation entries. The bundled
feincms_nav template tag knows how to collect navigation entries,
be they real Page instances or extended navigation entries.

	
class feincms.module.page.extensions.navigation.NavigationExtension

	Base class for all navigation extensions.

The name attribute is shown to the website administrator.

	
NavigationExtension.children(page, **kwargs)

	This is the method which must be overridden in every navigation extension.

It receives the page the extension is attached to, the depth up to which
the navigation should be resolved, and the current request object if it
is available.

	
class feincms.module.page.extensions.navigation.PagePretender(**kwargs)

	A PagePretender pretends to be a page, but in reality is just a shim layer
that implements enough functionality to inject fake pages eg. into the
navigation tree.

For use as fake navigation page, you should at least define the following
parameters on creation: title, url, level. If using the translation extension,
also add language.

	
PagePretender.get_children()

	overwrite this if you want nested extensions using recursetree

	
class feincms.module.page.extensions.navigation.TypeRegistryMetaClass(name, bases, attrs)

	You can access the list of subclasses as <BaseClass>.types

Related pages

Symlinked page content

This introduces a new page type, which has no content of its own but inherits
all content from the linked page.

Flexible page titles

Sometimes, a single title is not enough, you’d like subtitles, and maybe differing
titles in the navigation and in the <title>-tag.
This extension lets you do that.

Extensions not specific to the page module

Creation and modification timestamps

Track the modification date for objects.

	
feincms.module.extensions.changedate.pre_save_handler(sender, instance, **kwargs)

	Intercept attempts to save and insert the current date and time into
creation and modification date fields.

Content type count denormalization

Track the content types for pages. Instead of gathering the content
types present in each page at run time, save the current state at
saving time, thus saving at least one DB query on page delivery.

	
feincms.module.extensions.ct_tracker.single_pre_save_handler(sender, instance, **kwargs)

	Clobber the _ct_inventory attribute of this object

	
feincms.module.extensions.ct_tracker.tree_post_save_handler(sender, instance, **kwargs)

	Clobber the _ct_inventory attribute of this object and all sub-objects
on save.

Date-based publishing

Allows setting a date range for when the page is active. Modifies the active()
manager method so that only pages inside the given range are used in the default
views and the template tags.

Depends on the page class having a “active_filters” list that will be used by
the page’s manager to determine which entries are to be considered active.

	
feincms.module.extensions.datepublisher.datepublisher_response_processor(page, request, response)

	This response processor is automatically added when the datepublisher
extension is registered. It sets the response headers to match with
the publication end date of the page so that upstream caches and
the django caching middleware know when to expunge the copy.

	
feincms.module.extensions.datepublisher.format_date(d, if_none='')

	Format a date in a nice human readable way: Omit the year if it’s the current
year. Also return a default value if no date is passed in.

	
feincms.module.extensions.datepublisher.granular_now(n=None)

	A datetime.now look-alike that returns times rounded to a five minute
boundary. This helps the backend database to optimize/reuse/cache its
queries by not creating a brand new query each time.

Also useful if you are using johnny-cache or a similar queryset cache.

Featured items

Add a “featured” field to objects so admins can better direct top content.

Search engine optimization fields

Add a keyword and a description field which are helpful for SEO optimization.

Translations

This extension adds a language field to every page. When calling the request
processors the page’s language is activated.
Pages in secondary languages can be said to be a translation of a page in the
primary language (the first language in settings.LANGUAGES), thereby enabling
deeplinks between translated pages.

It is recommended to activate django.middleware.locale.LocaleMiddleware
so that the correct language will be activated per user or session even for
non-FeinCMS managed views such as Django’s administration tool.

	
feincms.module.extensions.translations.translation_set_language(request, select_language)

	Set and activate a language, if that language is available.

	
feincms.module.extensions.translations.user_has_language_set(request)

	Determine whether the user has explicitely set a language earlier on.
This is taken later on as an indication that we should not mess with the
site’s language settings, after all, the user’s decision is what counts.

 Copyright 2009-2010, Feinheit GmbH and contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FeinCMS 1.8.4 documentation

Media library

Models

	
class feincms.module.medialibrary.models.Category(*args, **kwargs)

	These categories are meant primarily for organizing media files in the
library.

	
class feincms.module.medialibrary.models.CategoryManager

	Simple manager which exists only to supply .select_related("parent")
on querysets since we can’t even __str__ efficiently without it.

	
class feincms.module.medialibrary.models.MediaFile(*args, **kwargs)

	MediaFile(id, file, type, created, copyright, file_size)

	
class feincms.module.medialibrary.models.MediaFileBase(*args, **kwargs)

	Abstract media file class. Includes the feincms.models.ExtensionsMixin
because of the (handy) extension mechanism.

	
MediaFileBase.determine_file_type(name)

	>>> t = MediaFileBase()
>>> t.determine_file_type('foobar.jpg')
'image'
>>> t.determine_file_type('foobar.PDF')
'pdf'
>>> t.determine_file_type('foobar.jpg.pdf')
'pdf'
>>> t.determine_file_type('foobar.jgp')
'other'
>>> t.determine_file_type('foobar-jpg')
'other'

	
class feincms.module.medialibrary.models.MediaFileTranslation(*args, **kwargs)

	Translated media file caption and description.

Admin classes

	
feincms.module.medialibrary.zip.import_zipfile(category_id, overwrite, data)

	Import a collection of media files from a zip file.

	category_id: if set, the pk of a Category that all uploaded

	files will have added (eg. cathegory “newly uploaded files”)

	overwrite: attempt to overwrite existing files. This might

	not work with non-trivial storage handlers

Fields

 Copyright 2009-2010, Feinheit GmbH and contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FeinCMS 1.8.4 documentation

Blog module

Extensions

Tagging

Blog entry translations

This extension adds a language field to every blog entry.

Blog entries in secondary languages can be said to be a translation of a
blog entry in the primary language (the first language in settings.LANGUAGES),
thereby enabling deeplinks between translated blog entries.

 Copyright 2009-2010, Feinheit GmbH and contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FeinCMS 1.8.4 documentation

Content types

ApplicationContent

CommentsContent

Embed a comment list and comment form anywhere. Uses the standard
django.contrib.comments application.

ContactFormContent

Simple contact form for FeinCMS. The default form class has name, email, subject
and content fields, content being the only one which is not required. You can
provide your own comment form by passing an additional form=YourClass
argument to the create_content_type call.

FileContent

Simple file inclusion content: You should probably use the media library
instead.

ImageContent

Simple image inclusion content: You should probably use the media library
instead.

	
class feincms.content.image.models.ImageContent(*args, **kwargs)

	Create an ImageContent like this:

Cls.create_content_type(
 ImageContent,
 POSITION_CHOICES=(
 ('left', 'Float to left'),
 ('right', 'Float to right'),
 ('block', 'Block'),
),
 FORMAT_CHOICES=(
 ('noop', 'Do not resize'),
 ('cropscale:100x100', 'Square Thumbnail'),
 ('cropscale:200x450', 'Medium Portait'),
 ('thumbnail:1000x1000', 'Large'),
))

Note that FORMAT_CHOICES is optional. The part before the colon
corresponds to the template filters in the ``feincms_thumbnail``
template filter library. Known values are ``cropscale`` and
``thumbnail``. Everything else (such as ``noop``) is ignored.

MediaFileContent

RawContent

	
class feincms.content.raw.models.RawContent(*args, **kwargs)

	Content type which can be used to input raw HTML code into the CMS.

The content isn’t escaped and can be used to insert CSS or JS
snippets too.

RichTextContent

RSSContent

SectionContent

TableContent

	
class feincms.content.table.models.TableContent(*args, **kwargs)

	Content to edit and display HTML tables in the CMS.

The standard rich text editor configuration in FeinCMS does not activate
the table plugin. This content type can be used to edit and display
nicely formatted HTML tables. It is easy to specify your own table
renderers.

	
class feincms.content.table.models.TableFormatter(**kwargs)

	Table formatter which should convert a structure of nested lists into
a suitable HTML table representation.

	
class feincms.content.table.models.TitleTableFormatter(**kwargs)

	TitleTableFormatter(first_row_title=True, first_column_title=True)

TemplateContent

	
class feincms.content.template.models.TemplateContent(*args, **kwargs)

	This content type scans all template folders for files in the
content/template/ folder and lets the website administrator select
any template from a set of provided choices.

The templates aren’t restricted in any way.

VideoContent

	
class feincms.content.video.models.VideoContent(*args, **kwargs)

	Copy-paste a URL to youtube or vimeo into the text box, this content type
will automatically generate the necessary embed code.

Other portals aren’t supported currently, but would be easy to add if anyone
would take up the baton.

You should probably use feincms-oembed.

	
VideoContent.ctx_for_video(vurl)

	Get a context dict for a given video URL

	
VideoContent.get_context_dict()

	Extend this if you need more variables passed to template

	
VideoContent.get_templates(portal='unknown')

	Extend/override this if you want to modify the templates used

 Copyright 2009-2010, Feinheit GmbH and contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FeinCMS 1.8.4 documentation

Context processors

 Copyright 2009-2010, Feinheit GmbH and contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FeinCMS 1.8.4 documentation

Contrib

Model and form fields

	
class feincms.contrib.fields.JSONField(verbose_name=None, name=None, primary_key=False, max_length=None, unique=False, blank=False, null=False, db_index=False, rel=None, default=<class django.db.models.fields.NOT_PROVIDED at 0x168d460>, editable=True, serialize=True, unique_for_date=None, unique_for_month=None, unique_for_year=None, choices=None, help_text='', db_column=None, db_tablespace=None, auto_created=False, validators=[], error_messages=None)

	TextField which transparently serializes/unserializes JSON objects

See:
http://www.djangosnippets.org/snippets/1478/

	
JSONField.get_prep_value(value)

	Convert our JSON object to a string before we save

	
JSONField.to_python(value)

	Convert our string value to JSON after we load it from the DB

	
JSONField.value_to_string(obj)

	Extract our value from the passed object and return it in string form

	
class feincms.contrib.richtext.RichTextField(verbose_name=None, name=None, primary_key=False, max_length=None, unique=False, blank=False, null=False, db_index=False, rel=None, default=<class django.db.models.fields.NOT_PROVIDED at 0x168d460>, editable=True, serialize=True, unique_for_date=None, unique_for_month=None, unique_for_year=None, choices=None, help_text='', db_column=None, db_tablespace=None, auto_created=False, validators=[], error_messages=None)

	Drop-in replacement for Django’s models.TextField which allows editing
rich text instead of plain text in the item editor.

Tagging

 Copyright 2009-2010, Feinheit GmbH and contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FeinCMS 1.8.4 documentation

Settings

Default settings for FeinCMS

All of these can be overridden by specifying them in the standard
settings.py file.

	
feincms.default_settings.FEINCMS_ALLOW_EXTRA_PATH = False

	Allow random gunk after a valid page?

	
feincms.default_settings.FEINCMS_CMS_404_PAGE = None

	Makes the page handling mechanism try to find a cms page with that
path if it encounters a page not found situation. This allows for nice
customised cms-styled error pages. Do not go overboard, this should
be as simple and as error resistant as possible, so refrain from
deeply nested error pages or advanced content types.

	
feincms.default_settings.FEINCMS_DEFAULT_PAGE_MODEL = 'page.Page'

	app_label.model_name as per django.db.models.get_model.
defaults to page.Page

	
feincms.default_settings.FEINCMS_FRONTEND_EDITING = False

	Show frontend-editing button?

	
feincms.default_settings.FEINCMS_JQUERY_NO_CONFLICT = False

	avoid jQuery conflicts – scripts should use feincms.jQuery instead of $

	
feincms.default_settings.FEINCMS_MEDIAFILE_OVERWRITE = False

	When uploading files to the media library, replacing an existing entry,
try to save the new file under the old file name in order to keep the
media file path (and thus the media url) constant.
Experimental, this might not work with all storage backends.

	
feincms.default_settings.FEINCMS_MEDIALIBRARY_THUMBNAIL = 'feincms.module.medialibrary.thumbnail.default_admin_thumbnail'

	Thumbnail function for suitable mediafiles. Only receives the media file
and should return a thumbnail URL (or nothing).

	
feincms.default_settings.FEINCMS_MEDIALIBRARY_UPLOAD_TO = 'medialibrary/%Y/%m/'

	Local path to newly uploaded media files

	
feincms.default_settings.FEINCMS_SINGLETON_TEMPLATE_CHANGE_ALLOWED = False

	Prevent changing template within admin for pages which have been
allocated a Template with singleton=True – template field will become
read-only for singleton pages.

	
feincms.default_settings.FEINCMS_SINGLETON_TEMPLATE_DELETION_ALLOWED = False

	Prevent admin page deletion for pages which have been allocated a
Template with singleton=True

	
feincms.default_settings.FEINCMS_THUMBNAIL_DIR = '_thumbs/'

	Prefix for thumbnails. Set this to something non-empty to separate thumbs
from uploads. The value should end with a slash, but this is not enforced.

	
feincms.default_settings.FEINCMS_TIDY_ALLOW_WARNINGS_OVERRIDE = True

	If True, users will be allowed to ignore HTML warnings (errors are always
blocked):

	
feincms.default_settings.FEINCMS_TIDY_FUNCTION = 'feincms.utils.html.tidy.tidy_html'

	Name of the tidy function - anything which takes (html) and returns
(html, errors, warnings) can be used:

	
feincms.default_settings.FEINCMS_TIDY_HTML = False

	If True, HTML will be run through a tidy function before saving:

	
feincms.default_settings.FEINCMS_TIDY_SHOW_WARNINGS = True

	If True, displays form validation errors so the user can see how their
HTML has been changed:

	
feincms.default_settings.FEINCMS_TRANSLATION_POLICY = 'STANDARD'

	How to switch languages.
* 'STANDARD': The page a user navigates to sets the site’s language

and overwrites whatever was set before.

	'EXPLICIT': The language set has priority, may only be overridden
by explicitely a language with ?set_language=xx.

	
feincms.default_settings.FEINCMS_TREE_EDITOR_INCLUDE_ANCESTORS = True

	Include ancestors in filtered tree editor lists

	
feincms.default_settings.FEINCMS_TREE_EDITOR_OBJECT_PERMISSIONS = False

	Enable checking of object level permissions. Note that if this option is
enabled, you must plug in an authentication backend that actually does
implement object level permissions or no page will be editable.

	
feincms.default_settings.FEINCMS_USE_PAGE_ADMIN = True

	When enabled, the page module is automatically registered with Django’s
default admin site (this is activated by default).

 Copyright 2009-2010, Feinheit GmbH and contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FeinCMS 1.8.4 documentation

Shortcuts

 Copyright 2009-2010, Feinheit GmbH and contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FeinCMS 1.8.4 documentation

Template tags

FeinCMS tags

	
feincms.templatetags.feincms_tags.feincms_frontend_editing(cms_obj, request)

	{% feincms_frontend_editing feincms_page request %}

	
feincms.templatetags.feincms_tags.feincms_load_singleton(template_key, cls=None)

	{% feincms_load_singleton template_key %} – return a FeinCMS
Base object which uses a Template with singleton=True.

	
feincms.templatetags.feincms_tags.feincms_render_content(context, content, request=None)

	{% feincms_render_content content request %}

	
feincms.templatetags.feincms_tags.feincms_render_region(context, feincms_object, region, request=None)

	{% feincms_render_region feincms_page “main” request %}

	
feincms.templatetags.feincms_tags.feincms_singleton_url(template_key, cls=None)

	{% feincms_singleton_url template_key %} – return the URL of a FeinCMS
Base object which uses a Template with singleton=True.

	
feincms.templatetags.feincms_tags.show_content_type_selection_widget(context, region)

	{% show_content_type_selection_widget region %}

Thumbnail filters

	
feincms.templatetags.feincms_thumbnail.cropscale(filename, size='200x200')

	Scales the image down and crops it so that its size equals exactly the size
passed (as long as the initial image is bigger than the specification).

	
feincms.templatetags.feincms_thumbnail.thumbnail(filename, size='200x200')

	Creates a thumbnail from the image passed, returning its path:

{{ object.image|thumbnail:"400x300" }}

	OR

	{{ object.image.name|thumbnail:”400x300” }}

You can pass either an ImageField, FileField or the name
but not the url attribute of an ImageField or FileField.

The dimensions passed are treated as a bounding box. The aspect ratio of
the initial image is preserved. Images aren’t blown up in size if they
are already smaller.

Both width and height must be specified. If you do not care about one
of them, just set it to an arbitrarily large number:

{{ object.image|thumbnail:"300x999999" }}

Page-module specific tags

ApplicationContent tags

	
feincms.templatetags.applicationcontent_tags.app_reverse(parser, token)

	Returns an absolute URL for applications integrated with ApplicationContent

The tag mostly works the same way as Django’s own {% url %} tag:

{% load applicationcontent_tags %}
{% app_reverse "mymodel_detail" "myapp.urls" arg1 arg2 %}

or

{% load applicationcontent_tags %}
{% app_reverse "mymodel_detail" "myapp.urls" name1=value1 name2=value2 %}

The first argument is a path to a view. The second argument is the URLconf
under which this app is known to the ApplicationContent. The second argument
may also be a request object if you want to reverse an URL belonging to the
current application content.

Other arguments are space-separated values that will be filled in place of
positional and keyword arguments in the URL. Don’t mix positional and
keyword arguments.

If you want to store the URL in a variable instead of showing it right away
you can do so too:

{% app_reverse "mymodel_detail" "myapp.urls" arg1 arg2 as url %}

	
feincms.templatetags.applicationcontent_tags.feincms_render_region_appcontent(page, region, request)

	Render only the application content for the region

This allows template authors to choose whether their page behaves
differently when displaying embedded application subpages by doing
something like this:

{% if not in_appcontent_subpage %}
 {% feincms_render_region feincms_page "main" request %}
{% else %}
 {% feincms_render_region_appcontent feincms_page "main" request %}
{% endif %}

	
feincms.templatetags.fragment_tags.fragment(parser, token)

	Appends the given content to the fragment. Different modes (replace,
append) are available if specified.

Either:

{% fragment request "title" %} content ... {% endfragment %}

or:

{% fragment request "title" (prepend|replace|append) %} content ... {% endfragment %}

	
feincms.templatetags.fragment_tags.get_fragment(parser, token)

	Fetches the content of a fragment.

Either:

{% get_fragment request "title" %}

or:

{% get_fragment request "title" as title %}

	
feincms.templatetags.fragment_tags.has_fragment(request, identifier)

	Returns the content of the fragment, despite its name:

{% if request|has_fragment:"title" %} ... {% endif %}

 Copyright 2009-2010, Feinheit GmbH and contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FeinCMS 1.8.4 documentation

Translations

This module offers functions and abstract base classes that can be used to
store translated models. There isn’t much magic going on here.

Usage example:

class News(models.Model, TranslatedObjectMixin):
 active = models.BooleanField(default=False)
 created = models.DateTimeField(default=timezone.now)

class NewsTranslation(Translation(News)):
 title = models.CharField(max_length=200)
 body = models.TextField()

Print the titles of all news entries either in the current language (if available)
or in any other language:

for news in News.objects.all():
 print news.translation.title

Print all the titles of all news entries which have an english translation:

from django.utils import translation
translation.activate('en')
for news in News.objects.filter(translations__language_code='en'):
 print news.translation.title

	
class feincms.translations.TranslatedObjectManager

	This manager offers convenience methods.

	
TranslatedObjectManager.only_language(language=<function short_language_code at 0x31138c0>)

	Only return objects which have a translation into the given language.

Uses the currently active language by default.

	
class feincms.translations.TranslatedObjectMixin

	Mixin with helper methods.

	
TranslatedObjectMixin.get_translation_cache_key(language_code=None)

	Return the cache key used to cache this object’s translations so we can purge on-demand

	
feincms.translations.Translation(model)

	Return a class which can be used as inheritance base for translation models

	
feincms.translations.admin_translationinline(model, inline_class=<class 'django.contrib.admin.options.StackedInline'>, **kwargs)

	Returns a new inline type suitable for the Django administration:

from django.contrib import admin
from myapp.models import News, NewsTranslation

	admin.site.register(News,

	
	inlines=[

	admin_translationinline(NewsTranslation),
],

)

	
feincms.translations.is_primary_language(language=None)

	Returns true if current or passed language is the primary language for this site.
(The primary language is defined as the first language in settings.LANGUAGES.)

	
feincms.translations.lookup_translations(language_code=None)

	Pass the return value of this function to .transform() to automatically
resolve translation objects

The current language is used if language_code isn’t specified.

	
feincms.translations.short_language_code(code=None)

	Extract the short language code from its argument (or return the default language code).

>>> short_language_code('de')
'de'
>>> short_language_code('de-at')
'de'
>>> short_language_code() == short_language_code(settings.LANGUAGE_CODE)
True

 Copyright 2009-2010, Feinheit GmbH and contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FeinCMS 1.8.4 documentation

Utilities

	
feincms.utils.copy_model_instance(obj, exclude=None)

	Copy a model instance, excluding primary key and optionally a list
of specified fields.

	
feincms.utils.path_to_cache_key(path, max_length=200, prefix='')

	Convert a string (path) into something that can be fed to django’s
cache mechanism as cache key. Ensure the string stays below the
max key size, so if too long, hash it and use that instead.

	
feincms.utils.shorten_string(str, max_length=50, ellipsis=u' \u2026 ')

	Shorten a string for display, truncate it intelligently when too long.
Try to cut it in 2/3 + ellipsis + 1/3 of the original title. Also try to
cut the first part off at a white space boundary instead of in mid-word.

HTML utilities

Template tag helpers

I really hate repeating myself. These are helpers that avoid typing the
whole thing over and over when implementing additional template tags

They help implementing tags of the following forms:

{% tag as var_name %}
{% tag of template_var as var_name %}
{% tag of template_var as var_name arg1,arg2,kwarg3=4 %}

 Copyright 2009-2010, Feinheit GmbH and contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FeinCMS 1.8.4 documentation

Views and decorators

Decorators

	
feincms.views.decorators.standalone(view_func)

	Marks the view method as standalone view; this means that
HttpResponse objects returned from ApplicationContent
are returned directly, without further processing.

 Copyright 2009-2010, Feinheit GmbH and contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FeinCMS 1.8.4 documentation

Management commands

Database schema checker

	
feincms.management.checker.check_database_schema(cls, module_name)

	Returns a function which inspects the database table of the passed class.
It checks whether all fields in the model are available on the database
too. This is especially helpful for models with an extension mechanism,
where the extension might be activated after syncdb has been run for the
first time.

Please note that you have to connect the return value using strong
references. Here’s an example how to do this:

signals.post_syncdb.connect(check_database_schema(Page, __name__), weak=False)

(Yes, this is a weak attempt at a substitute for South until we find
a way to make South work with FeinCMS’ dynamic model creation.)

Content-type specific management commands

Page tree rebuilders

Those should not normally be used. Older versions of MPTT sometimes
got confused with repeated saves and tree-structure changes. These
management commands helped cleaning up the mess.

Miscellaneous commands

 Copyright 2009-2010, Feinheit GmbH and contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FeinCMS 1.8.4 documentation

FeinCMS 1.8 release notes

Welcome to FeinCMS 1.8!

FeinCMS finally got continuous integration

Have a look at the status page here:

Travis CI [https://travis-ci.org/feincms/feincms]

Preliminary Python 3.3 support

The testsuite runs through on Python 3.3.

Singleton templates

Templates can be defined to be singletons, which means that those templates
can only occur once on a whole site. The page module additionally allows
specifying that singleton templates must not have any children, and also
that the page cannot be deleted.

Dependencies are automatically installed

Now that distribute and setuptools have merged, setup.py has been
converted to use setuptools again which means that all dependencies
of FeinCMS should be installed automatically.

Backwards-incompatible changes

	The template naming and order used in the section content has been changed
to be more similar to the media library. The naming is now
<mediafile type>_<section content type>, additionally the media file type
is considered more important for template resolution than the section content
type.

	The mechanism for finding the best application content match has been
massively simplified and also made customizable. The default implementation
of ApplicationContent.closest_match now only takes the current language
into account.

Removal of deprecated features

	The module feincms.admin.editor has been removed. Import the classes
from feincms.admin.item_editor or feincms.admin.tree_editor directly.

	The HTML cleansing module feincms.utils.html.cleanse has been removed.
Use the standalone package
feincms-cleanse [http://pypi.python.org/pypi/feincms-cleanse] instead.

	Registering extensions using shorthand notation is not possible anymore.
Always use the full python path to the extension module.

	The two navigation template tags feincms_navigation and
feincms_navigation_extended have been removed. The improved
feincms_nav tag has been introduced with FeinCMS v1.6.

	The function-based generic views in feincms.views.generic have been
removed. The decorator function
feincms.views.decorators.add_page_to_extra_context() is therefore
obsolete and has also been removed.

	The old media library content type module
feincms.content.medialibrary.models has been replaced with the
contents of feincms.content.medialibrary.v2. The model field
position has been renamed to type, instead of POSITION_CHOICES
you should use TYPE_CHOICES now. The code has been simplified and
hacks to imitate raw_id_fields have been replaced by working stock
code. The v2 module will stay around for another release and will be
removed in FeinCMS v1.8. The now-unused template
admin/content/mediafile/init.html has been deleted.

	Page.setup_request() has been removed because it has not been doing
anything for some time now.

New deprecations

	Page extensions should start explicitly adding their fields to the
administration interface using modeladmin.add_extension_options.
FeinCMS v1.8 will warn about fields collected automatically, the next
release will not add unknown fields to the administration interface
anymore.

	All extensions should inherit from feincms.extensions.Extension.
Support for register(cls, admin_cls)-style functions will be removed
in FeinCMS v1.9.

Notable features and improvements

	The template tags feincms_render_region and feincms_render_content
do not require a request object anymore. If you omit the request
parameter, the request will not be passed to the render() methods.

	The code is mostly flake8 [https://pypi.python.org/pypi/flake8] clean.

	The new management command medialibrary_orphans can be used to find
files which aren’t referenced in the media library anymore.

	The test suite has been moved into its own top-level module.

Bugfixes

	The item and tree editor finally take Django permissions into account.

	The datepublisher response processor should not crash during daylight
savings time changes anymore.

	The undocumented attribute PageAdmin.unknown_fields has been removed
because it was modified at class level and not instance level which made
reuse harder than necessary.

Compatibility with Django and other apps

FeinCMS 1.8 requires Django 1.4 or better. The testsuite is successfully run
against Django 1.4, 1.5, 1.6 and the upcoming 1.7.

 Copyright 2009-2010, Feinheit GmbH and contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FeinCMS 1.8.4 documentation

FeinCMS 1.7 release notes

Welcome to FeinCMS 1.7!

Extensions-mechanism refactor

The extensions mechanism has been refactored to remove the need to make models
know about their related model admin classes. The new module
feincms.extensions contains mixins and base classes - their purpose
is as follows: Extensions.

View code refactor

Made views, content type and request / response processors reusable.

The legacy views at feincms.views.legacy were considered unhelpful
and were removed.

Backwards-incompatible changes

Page manager methods behavior

Previously, the following page manager methods sometimes returned inactive
objects or did not raise the appropriate (and asked for)
Http404 exception:

	Page.objects.page_for_path

	Page.objects.best_match_for_path

	Page.objects.for_request

The reason for that was that only the page itself was tested for activity
in the manager method, and none of its ancestors. The check whether all
ancestors are active was only conducted later in a request processor. This
request processor was registered by default and was always run when
Page.objects.for_request was called with setup=True.

However, request processors do not belong into the model layer. The necessity
of running code belonging to a request-response cycle to get the correct answer
from a manager method was undesirable. This has been rectified, those manager
methods check the ancestry directly. The now redundant request processor
require_path_active_request_processor has been removed.

Reversing application content URLs

The support for monkey-patching applicationcontent-awareness into Django’s
django.core.urlresolvers.reverse() has been removed.

Removal of deprecated features

	The old media library content type module
feincms.content.medialibrary.models has been replaced with the
contents of feincms.content.medialibrary.v2. The model field
position has been renamed to type, instead of POSITION_CHOICES
you should use TYPE_CHOICES now. The code has been simplified and
hacks to imitate raw_id_fields have been replaced by working stock
code. The v2 module will stay around for another release and will be
removed in FeinCMS v1.8. The now-unused template
admin/content/mediafile/init.html has been deleted.

New deprecations

	Page.setup_request() does not do anything anymore and will be removed
in FeinCMS v1.8.

Notable features and improvements

	A lazy version of app_reverse()
is now available,
app_reverse_lazy().

	Because of the extensions refactor mentioned above, all
register_extension methods have been removed. Additionally, the model
admin classes are not imported inside the models.py files anymore.

	The setting FEINCMS_USE_PAGE_ADMIN can be set to false to prevent
registration of the page model with the administration. This is especially
useful if you only want to reuse parts of the page module.

	Various classes in feincms.module.page do not hardcode the page
class anymore; hooks are provided to use your own models instead. Please
refer to the source for additional information.

	Page.redirect_to can also contain the primary key of a page now, which
means that the redirect target stays correct even if the page URL changes.

	Before, page content was copied automatically when creating a translation
of an existing page. This behavior can be deactivated by unchecking a
checkbox now.

	Work has begun to make the page forms, model admin classes and managers
work with an abstract page model so that it will be easier to work with
several page models in a single Django site.

Bugfixes

	It should be possible to store FeinCMS models in a secondary database, as
long as the base model and all content types are stored in the same
database.

	Changing templates in the item editor where the templates do not share
common regions does not result in orphaned content blocks anymore.

	feincms.utils.get_object() knows how to import modules, not only
objects inside modules now.

	The order and priority values for pages have been fixed when generating
sitemaps.

	Various save and delete methods now come with alters_data=True
to prevent their use in templates.

	Only one translation is permitted per language when using
feincms.translations.

	FeinCMS can now be used without django.contrib.sites.

	If the fieldset of a content inline has been customized, the fieldset is
not processed again to make sure that all form fields are actually shown.
If you use dynamically generated fields in a content inline such as the
application content does, you must not customize the fieldsets attribute
of the FeinCMSInline.

Compatibility with Django and other apps

FeinCMS 1.7 requires Django 1.4 or better.

 Copyright 2009-2010, Feinheit GmbH and contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FeinCMS 1.8.4 documentation

FeinCMS 1.6 release notes

Welcome to FeinCMS 1.6!

Backwards-incompatible changes

Reversing application content URLs

The default value of FEINCMS_REVERSE_MONKEY_PATCH has been changed to
False. Support for monkey-patching the reverse() method to support
the old 'urlconf/viewname' notation will be removed in the 1.7 release.

Improvements to the bundled file and image contents

	ImageContent, FileContent and VideoContent now have pretty
icons out-of-the-box.

	ImageContent now accepts optional FORMAT_CHOICES for use with
FeinCMS’ bundled thumbnailers, as well as caption and alt_text fields.

Note

If you are upgrading from an earlier version of FeinCMS, you’ll have to
add the new database columns yourself or use a migration tool like South
to do it for you. Instructions for MySQL and the page module follow:

ALTER TABLE page_page_imagecontent ADD COLUMN `alt_text` varchar(255) NOT NULL;
ALTER TABLE page_page_imagecontent ADD COLUMN `caption` varchar(255) NOT NULL;

If you want to use FORMAT_CHOICES:

ALTER TABLE page_page_imagecontent ADD COLUMN `format` varchar(64) NOT NULL;

	FileContent now displays the size of the file in the default template,
and uses span elements to allow styling of the title / size.

Removal of deprecated features

	Deprecated page manager methods have been removed. You should use
Page.objects.for_request instead of the following manager methods:
	Page.objects.page_for_path_or_404()

	Page.objects.for_request_or_404()

	Page.objects.best_match_for_request()

	Page.objects.from_request()

	Deprecated page methods have been removed:
	Page.active_children(): Use Page.children.active() instead.

	Page.active_children_in_navigation(): Use
Page.children.in_navigation() instead.

	Page.get_siblings_and_self(): You probably wanted
self.parent.children.active() or
self.get_siblings(include_self=True).active() anyway.

	The shortcuts Page.register_request_processors() and
Page.register_response_processors() to register several request or response
processors at once have been removed in favor of their counterparts which
only allow one processor at a time, but allow for replacing FeinCMS’ included
processors, require_path_active_request_processor and
redirect_request_processor.

	It is not possible anymore to access the request and response processors as
methods of the Page class. The processors are all in
feincms.module.page.processors now.

	The deprecated support for prefilled attributes has been removed. Use
Django’s own prefetch_related or feincms.utils.queryset_transform
instead.

	The deprecated feincms.views.base module has been removed. The code has
been moved to feincms.views.legacy during the FeinCMS v1.5 cycle.

New deprecations

	The view decorator feincms.views.decorators.add_page_to_extra_context
has been deprecated as it was mostly used with function-based generic views,
which have been deprecated in Django as well. Use Django’s class-based generic
views and the feincms.context_processors.add_page_if_missing context
processor if you need similar functionality instead.

	The content type feincms.content.medialibrary.models.MediaFileContent has
been deprecated since FeinCMS v1.4. The whole module has been deprecated now
and will be replaced with the contents of feincms.content.medialibrary.v2
in FeinCMS v1.7. The v2 module will stay around for another release or
two so that code using v2 will continue working with FeinCMS v1.8 (at
least).

	The template tag feincms_navigation has been superseded by feincms_nav
which fixes a few problems with the old code and is generally much more
maintainable. The old version will stay around for one more version and will
be removed for FeinCMS v1.8. The only difference (apart from the bugfixes and
the slightly different syntax) is that feincms_nav unconditionally uses
navigation extensions. Additionally, feincms_navigation uses
feincms_nav‘s implementation behind the scenes, which means that the
extended argument does not have an effect anymore (it’s always active).

	The HTML cleaning support in feincms.utils.html.cleanse which could be
easily used in the RichTextContent by passing cleanse=True has been
copied into its own Python package,
feincms-cleanse [http://pypi.python.org/pypi/feincms-cleanse]. You should
start passing a callable to cleanse right now. The existing support for
cleansing will only be available up to FeinCMS v1.7.

	FeinCMS v1.8 will not support shorthands anymore when registering extensions.
Always provide the full python path to the extension file (or pass callables)
to feincms.models.Base.register_extensions. That is,
Page.register_extensions('feincms.module.extensions.ct_tracker') should
be used instead of Page.register_extensions('ct_tracker'). While it is
a bit more work it will make it much more explicit what’s going on.

Compatibility with Django and other apps

FeinCMS 1.6 requires Django 1.4. If you want to use django-reversion with FeinCMS
you have to use django-reversion 1.6 or newer.

Notable features and improvements

	The bundled content types take additional steps to ensure that the main view
context is available in content types’ templates. If you only use the rendering
tags (feincms_render_region and feincms_render_content) you can take
advantage of all variables from your context processors in content types’
templates too. Furthermore, those templatetags have been simplified by using
Django’s template.Library.simple_tag method now, which means that filters
etc. are supported as template tag arguments now.

	MediaFile does no longer auto-rotate images on upload. It really is not a
media library’s job to magically modify user content; if needed, it should be
done in an image filter (like sorl). Also, reading through the image data
seems to have a side effect on some external storage engines which then would
only save half the image data, see issue #254. Additionally, FeinCMS does not
try anymore to detect whether uploaded files really are images, and only looks
at the file extension by default. We did not peek at the contents of other file
types either.

	A new model field has been added, feincms.contrib.richtext.RichTextField.
This is a drop-in replacement for Django’s models.TextField with the
difference that it adds the CSS classes required by rich text fields in the
item editor.

	The value of FEINCMS_FRONTEND_EDITING defaults to False now.

	Frontend editing can now safely be used with caching. This is accomplished
by saving state in a cookie instead of creating sessions all the time.

	The SectionContent content type has been updated and does properly
use raw_id_fields for the media files instead of the hack which was used
before.

	It is now possible to specify a different function for generating thumbnails
in the media library administration. Set the setting
FEINCMS_MEDIALIBRARY_THUMBNAIL to a function taking a media file instance
and returning a URL to a thumbnail image or nothing if the file type cannot
be handled by the thumbnailer.

	Thumbnails generated by the bundled |thumbnail and |cropscale template
filters are stored separately from the uploaded files now. This change means
that all thumbnails will be automatically regenerated after a FeinCMS update.
If you need the old behavior for some reason, set the setting
FEINCMS_THUMBNAIL_DIR to an empty string. The default setting is '_thumbs/'.

	All templates and examples have been converted to the new {% url %}
syntax.

	Custom comment models are now supported in the CommentsContent.

	Media files are now removed from the disk too if a media file entry is
removed from the database.

	The modules feincms.module.page.models and
feincms.module.medialibrary.models have been split up. Admin code has
been moved into modeladmin.py files, form code into forms.py.

Bugfixes

	The core page methods support running with APPEND_SLASH = False now.
Many content types using forms do not, however.

	The MPTT attributes aren’t hardcoded in the tree editor anymore. Custom names
for the left, right, level and tree_id attributes are now
supported. Models which do not use id as their primary key are supported
now as well.

	FeinCMS uses timezone-aware datetimes now.

 Copyright 2009-2010, Feinheit GmbH and contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FeinCMS 1.8.4 documentation

FeinCMS 1.5 release notes

Explicit reversing of URLs from ApplicationContent-embedded apps

URLs from third party apps embedded via ApplicationContent have
been traditionally made reversable by an ugly monkey patch of
django.core.urlresolvers.reverse. This mechanism has been deprecated
and will be removed in future FeinCMS versions. To reverse an URL
of a blog entry, instead of this:

deprecated
from django.core.urlresolvers import reverse
reverse('blog.urls/blog_detail', kwargs={'year': 2011, 'slug': 'some-slug'})

do this:

from feincms.content.application.models import app_reverse
app_reverse('blog_detail', 'blog.urls', kwargs={'year': 2011, 'slug': 'some-slug'})

If you do not want to use the monkey patching behavior anymore, set
FEINCMS_REVERSE_MONKEY_PATCH = False in your settings file.

The new method is accessible inside a template too:

{% load applicationcontent_tags %}

{# You have to quote the view name and the URLconf as in Django's future {% url %} tag. #}
{% app_reverse "blog_detail" "blog.urls" year=2011 slug='some-slug' %}

Inheritance 2.0

It’s possible to use Django’s template inheritance from third party
applications embedded through ApplicationContent too. To use this
facility, all you have to do is return a tuple consisting of the
template and the context. Instead of:

def my_view(request):
 # ...
 return render_to_response('template.html', {'object': ...})

simply use:

def my_view(request):
 # ...
 return 'template.html', {'object': ...}

Note

template.html should extend a base template now.

Better support of InlineModelAdmin options for content types

The FeinCMSInline only differs from a stock StackedInline in
differing defaults of form, extra and fk_name. All inline
options should be supported now, especially raw_id_fields and
fieldsets.

Minor changes

	The main CMS view is now based on Django’s class-based generic
views. Inheritance 2.0 will not work with the old views. You don’t
have to do anything if you use feincms.urls (as is recommended).

	Request and response processors have been moved out of the
Page class into their own module, feincms.module.page.processors.
They are still accessible for some time at the old place.

	django.contrib.staticfiles is now a mandatory dependency for
the administration interface.

	The active and in_navigation booleans on the Page
class now default to True.

	The minimum version requirements have changed. Django versions older than
1.3 aren’t supported anymore, django-mptt must be 0.4 upwards.

	The mptt tree rebuilders have been removed; django-mptt offers tree
rebuilding functionality itself.

	django-queryset-transform has been imported under feincms.utils
and is used for speeding up various aspects of the media library. The
prefilled attributes have been deprecated, because
django-queryset-transform can be used to do everything they did,
and better.

	PageManager.active_filters has been converted from a list to a
SortedDict. This means that replacing or removing individual
filters has become much easier than before. If you only used the
public methods for registering new filters you don’t have to change
anything.

	The same has been done with the request and response processors.

	The TemplateContent has been changed to use the filesystem and
the app_directories template loaders directly. It can be used
together with the cached template loader now.

	The tree editor has received a few usability fixes with (hopefully)
more to come.

	Page.setup_request can be called repeatedly without harm now.
The return value of the first call is cached and returned on
subsequent calls which means that request processors are run
at most once.

	Extensions such as translations and datepublisher which were
only usable with the page module have been made more generic and are
available for other FeinCMS-derived models too.

	Media files from the medialibrary can be exported and imported in
bulk.

	When creating a new translation of a page, content is only copied
from the original translation when the new page does not have any
content yet. Furthermore the user is notified that some content-copying
has happened.

	A few bugs have been fixed.

 Copyright 2009-2010, Feinheit GmbH and contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FeinCMS 1.8.4 documentation

FeinCMS 1.4 release notes

	FeinCMS supports more than one site from the same database with
django.contrib.sites now. Thanks to Bojan Mihelac and Stephen Tyler
for the work and insistence on this issue.

	It is possible to customize the administration model inline used for
content types. This means that it’s possible to customize more aspects
of content type editing and to reuse more behaviors from Django itself,
such as raw_id_fields.

	FeinCMS has gained support for django-reversion.

	Reusing the media library in your own content types has become much
easier than before. When using a
feincms.module.medialibrary.fields.MediaFileForeignKey instead of
the standard django.db.models.ForeignKey and adding the media file
foreign key to raw_id_fields, you get the standard Django behavior
supplemented with a thumbnail if the media file is an image. This requires
the next feature too, which is...

	Custom InlineModelAdmin classes may be used for the content types now
by adding a feincms_item_editor_inline attribute to the content type
specifying the inline class to be used.

	New projects should use feincms.content.medialibrary.v2.MediaFileContent
instead of feincms.content.medialibrary.models.MediaFileContent. The
argument POSITION_CHOICES and the corresponding field have been
renamed to TYPE_CHOICES and type because that’s a more fitting
description of the intended use. The old and the new media file content
should not be mixed; the hand-woven raw_id_fields support of the
old media file content was not specific enough and interferes with
Django’s own raw_id_fields support.

	FeinCMS has gained a preview feature for pages which shouldn’t be
accessible to the general public yet. Just add the following line
above the standard FeinCMS handler:

url(r'', include('feincms.contrib.preview.urls')),

Another button will be automatically added in the page item editor.

Apart from all these new features a few cleanups have been made:

	FeinCMS 1.2 removed the CKEditor-specific rich text content in favor of a
generalized rich text content supporting different rich text editors.
Unfortunately the documentation and the available settings only reflected
this partially. This has been rectified. Support for TINYMCE_JS_URL,
FEINCMS_TINYMCE_INIT_TEMPLATE and FEINCMS_TINYMCE_INIT_CONTEXT has
been completely removed. The two settings FEINCMS_RICHTEXT_INIT_CONTEXT
and FEINCMS_RICHTEXT_INIT_TEMPLATE should be used instead. See the
Content types - what your page content is built of documentation for more details.

	The two settings FEINCMS_MEDIALIBRARY_ROOT and
FEINCMS_MEDIALIBRARY_URL have been removed. Their values always
defaulted to MEDIA_ROOT and MEDIA_URL. The way they were used
made it hard to support other storage backends in the media library.
If you still need to customize the storage class used in the media
library have a look at MediaFile.reconfigure.

	Support for the show_on_top option for the ItemEditor has been
completely removed. This functionality has been deprecated since 1.2.

	A few one-line Page manager methods which were too similar to each other
have been deprecated. They will be removed in the next release of FeinCMS.
This concerns page_for_path_or_404, for_request_or_404,
best_match_for_request and from_request. The improved
for_request method should cover all bases.

	A few page methods have been deprecated. This concerns active_children,
active_children_in_navigation and get_siblings_and_self. The useful
bits are already available through Django’s own related managers.

 Copyright 2009-2010, Feinheit GmbH and contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	FeinCMS 1.8.4 documentation

FeinCMS 1.3 release notes

FeinCMS 1.3 includes many bugfixes and cleanups and a number of new features.
The cleanups and features caused a few backwards incompatible changes. The
upgrade path is outlined below.

Highlights

	FeinCMS pages use the standard Django permalink mechanism inside the
get_absolute_url implementation. This means that you have to update the
URL definition if you did not include feincms.urls directly.

Change this:

url(r'^$|^(.*)/$', 'feincms.views.base.handler'),

to this:

url(r'', include('feincms.urls')),

Defining the URL patterns directly is still possible. Have a look at
feincms.urls to find out how this should be done.

	FeinCMS requires at least Django 1.2 but already has support for Django 1.3
features such as staticfiles. The FeinCMS media file folder has been moved
from feincms/media/feincms to feincms/static/feincms - if you use
django.contrib.staticfiles with Django 1.3 (and you should!), FeinCMS’
media files for the administration interface will automatically be made
available without any further work on your part.

	Content types can specify the media files (Javascript and CSS files) they
need to work correctly. See Extra media for content types for information
on how to use this in your own content types.

	The content type loading process has been streamlined and requires much
less database queries than before. The performance hit on sites with deep
page hierarchies, inheritance and many regions is several times smaller
than before.

	The content type interface has been extended with two new methods, available
for all content types which need it: process is called before rendering
pages and is guaranteed to receive the current request instance. Each and
every content type (not only application contents as before) has the
ability to return full HTTP responses which are returned directly to the
user. finalize is called after rendering and can be used to set
HTTP headers and do other post-processing tasks. See
Influencing request processing through a content type for more information.

(Backwards incompatible and other) Changes

	The default ContentProxy has been rewritten to load all content type
instances on initialization. The instances stay around for the full
request-response cycle which allows us to remove many quasi-global variables
(variables attached to the request object). The new initialization is
much more efficient in terms of SQL queries needed; the implementation is
contained inside the ContentProxy class and not distributed all over
the place.

	The ContactFormContent has been updated to take advantage of the
new content type interface where content types can influence the
request-response cycle in more ways.

	The ct_tracker extension has been rewritten to take advantage of the
new ContentProxy features. This means that the format of _ct_inventory
could not be kept backwards compatible and has been changed. The inventory
is versioned now, therefore upgrading should not require any action on
your part.

	feincms_site is not available in the context anymore. It was undocumented,
mostly unused and badly named anyway. If you still need this functionality you
should use django.contrib.sites directly yourself.

	The _feincms_appcontent_parameters has been folded into the
_feincms_extra_context attribute on the current request. The
appcontent_parameters template tag is not necessary anymore
(the content of _feincms_extra_context is guaranteed to be available in
the template context) and has been removed.

In your appcontent code, change all references of _feincms_appcontent_parameters
to _feincms_extra_context, e.g.

params = getattr(request, ‘_feincms_appcontent_parameters’, {})

becomes

params = getattr(request, ‘_feincms_extra_context’, {})

	As part of the effort to reduce variables attached to the request object
(acting as a replacement for global variables), request.extra_path
has been removed. The same information can be accessed via
request._feincms_extra_context['extra_path'].

	The feincms.views.applicationcontent module has been removed. The
special casing it provided for application content-using pages aren’t
necessary anymore.

	The page’s get_absolute_url method uses URL reversion for determining the
URL of pages instead of returning _cached_url. This means that you need
to modify your URLconf entries if you added them to your own urls.py
instead of including feincms.urls. Please make sure that you have two
named URL patterns, feincms_home and feincms_handler:

from feincms.views.base import handler

urlpatterns = patterns('',
 # ... your patterns ...

 url(r'^$', handler, name='feincms_home'),
 url(r'^(.*)/$', handler, name='feincms_handler'),
)

If you want the old behavior back, all you need to do is add the following
code to your settings.py:

ABSOLUTE_URL_OVERRIDES = {
 'page.page': lambda page: page._cached_url,
 }

	The copy/replace and preview mechanisms never worked quite right. They were
completely dropped from this release. If you still need the ability to create
copies of objects, use the standard Django ModelAdmin.save_as feature.

 Copyright 2009-2010, Feinheit GmbH and contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	FeinCMS 1.8.4 documentation

FeinCMS 1.2 release notes

Welcome to the first release notes for FeinCMS!

Overview

FeinCMS 1.2 sports several large changes, including:

	Overhauled item editor. The new item editor uses standard Django administration
fieldsets; you can use almost all standard Django configuration mechanisms.
show_on_top has been deprecated, standard fieldsets should be used
instead.

	The split pane editor has been removed. It wasn’t much more than a proof of
concept and was never bug-free.

	The required Django version is now 1.2. Compatibility with older Django versions
has been removed.

	The rich text configuration has slightly changed; CkRichTextContent has
been completely removed in favor of a rich text editor agnostic configuration
method. TINYMCE_JS_URL should be replaced by an appropriate
FEINCMS_RICHTEXT_INIT_CONTEXT settings value. See the
Content types - what your page content is built of documentation for more details.

	A new content type, TemplateContent has been added which can be used to
render templates residing on the hard disk.

	The TreeEditor JavaScript code has been rewritten, reintroducing
drag-drop for reordering pages, but this time in a well-performing way not
sluggish as before.

	feincms.models.Base is still available, feincms.models.create_base_model
is the more flexible way of creating the aforementioned base model. If
create_base_model is used the base model can be freely defined.

	Many small improvements and bugfixes all over the place.

 Copyright 2009-2010, Feinheit GmbH and contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	FeinCMS 1.8.4 documentation

 Python Module Index

 f

 			

 		
 f	

 	[image: -]
 	
 feincms	

 	
 	
 feincms.admin.item_editor	

 	
 	
 feincms.admin.tree_editor	

 	
 	
 feincms.content.application.models	

 	
 	
 feincms.content.comments.models	

 	
 	
 feincms.content.contactform.models	

 	
 	
 feincms.content.file.models	

 	
 	
 feincms.content.image.models	

 	
 	
 feincms.content.medialibrary.v2	

 	
 	
 feincms.content.raw.models	

 	
 	
 feincms.content.richtext.models	

 	
 	
 feincms.content.rss.models	

 	
 	
 feincms.content.section.models	

 	
 	
 feincms.content.table.models	

 	
 	
 feincms.content.template.models	

 	
 	
 feincms.content.video.models	

 	
 	
 feincms.module.medialibrary	

 	
 	
 feincms.module.page	

 	
 	
 feincms.module.page.extension	

 	
 	
 feincms.module.page.templatetags.feincms_page_tags	

 	
 	
 feincms.templatetags.applicationcontent_tags:	

 	
 	
 feincms.templatetags.feincms_tags	

 	
 	
 feincms.utils	

 Copyright 2009-2010, Feinheit GmbH and contributors.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	FeinCMS 1.8.4 documentation

Index

 A
 | C
 | F
 | G
 | H
 | I
 | M
 | R
 | S
 | T
 | V

A

 	

 	add_extension_options() (feincms.extensions.ExtensionModelAdmin method)

 	append_content_from() (Base method)

 	

 	ApplicationContent (class in feincms.content.application.models)

C

 	

 	collect_dict_values() (in module feincms.utils)

 	CommentsContent (class in feincms.content.comments.models)

 	ContactFormContent (class in feincms.content.contactform.models)

 	content (Base attribute)

 	

 	content_type_for() (Base method)

 	copy_content_from() (Base method)

 	create_content_type() (Base method)

F

 	

 	feincms.admin.item_editor (module)

 	feincms.admin.tree_editor (module)

 	feincms.content.application.models (module)

 	feincms.content.comments.models (module)

 	feincms.content.contactform.models (module)

 	feincms.content.file.models (module)

 	feincms.content.image.models (module)

 	feincms.content.medialibrary.v2 (module)

 	feincms.content.raw.models (module)

 	feincms.content.richtext.models (module)

 	feincms.content.rss.models (module)

 	feincms.content.section.models (module)

 	feincms.content.table.models (module)

 	

 	feincms.content.template.models (module)

 	feincms.content.video.models (module)

 	feincms.extensions.Extension (built-in class)

 	feincms.extensions.ExtensionModelAdmin (built-in class)

 	feincms.extensions.ExtensionsMixin (built-in class)

 	feincms.module.medialibrary (module)

 	feincms.module.page (module)

 	feincms.module.page.extension (module)

 	feincms.module.page.templatetags.feincms_page_tags (module)

 	feincms.templatetags.applicationcontent_tags: (module)

 	feincms.templatetags.feincms_tags (module)

 	feincms.utils (module)

 	FileContent (class in feincms.content.file.models)

G

 	

 	get_object() (in module feincms.utils)

H

 	

 	handle_model() (feincms.extensions.Extension method)

 	

 	handle_modeladmin() (feincms.extensions.Extension method)

I

 	

 	ImageContent (class in feincms.content.image.models)

 	initialize_extensions() (feincms.extensions.ExtensionModelAdmin method)

 	

 	ItemEditor (class in feincms.admin.item_editor)

M

 	

 	MediaFileContent (class in feincms.content.medialibrary.v2)

 	

 	model (feincms.extensions.Extension attribute)

R

 	

 	RawContent (class in feincms.content.raw.models)

 	register_regions() (Base method)

 	register_templates() (Base method)

 	

 	replace_content_with() (Base method)

 	RichTextContent (class in feincms.content.richtext.models)

 	RSSContent (class in feincms.content.rss.models)

S

 	

 	SectionContent (class in feincms.content.section.models)

T

 	

 	TableContent (class in feincms.content.table.models)

 	TemplateContent (class in feincms.content.template.models)

 	

 	TreeEditor (class in feincms.admin.tree_editor)

V

 	

 	VideoContent (class in feincms.content.video.models)

 Copyright 2009-2010, Feinheit GmbH and contributors.
 Created using Sphinx 1.1.3.

 _images/tree_editor.png
Select page to change e
a s
e Fhan
G e PR] S Goman 1 8
5 0 cumn ¢ anone o o comen IS 4 o
G ormmn PR TR o e ce oo ae L
5 o tumn v o v PR e T
5 0 croten PR R e e cE1r 11T <
pr— ¢« woe st 06117
S v v wme s o ceimiT oy
o me ¢ wmee st -
O cormeomt ¥ meee u s &
o e ¢« aw s o e .

_static/minus.png

search.html

 Navigation

 		
 index

 		
 modules |

 		FeinCMS 1.8.4 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2009-2010, Feinheit GmbH and contributors.
 Created using Sphinx 1.1.3.

_static/comment-close.png

_static/up-pressed.png

_static/down.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_images/item_editor_content.png
© T pagEngsh U ms changed sccesuny.You iy o a3 b

Change page @0 eTmTmo
o Py e ... |
e e
P
[

Te. B fomm (B 2
Lovmpin sy sy st sy e s e

P ent

e o] o seaes] ok

o e e .. |

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/plus.png

