
FeinCMS Documentation
Release 23.8.0

Feinheit GmbH and contributors

Aug 07, 2023

Contents

1 Contents 3
1.1 Installation instructions . 3

1.1.1 Installation . 3
1.1.2 Configuration . 3

1.2 The built-in page module . 4
1.2.1 Activating the page module and creating content types . 4
1.2.2 Setting up the admin interface . 5
1.2.3 Wiring up the views . 5
1.2.4 Adding another content type . 5
1.2.5 Page extension modules . 6
1.2.6 Using page request processors . 7
1.2.7 Using page response processors . 8
1.2.8 WYSIWYG Editors . 8
1.2.9 ETag handling . 9
1.2.10 Sitemaps . 9

1.3 Content types - what your page content is built of . 10
1.3.1 What is a content type anyway? . 10
1.3.2 Rendering contents in your templates . 10
1.3.3 Implementing your own content types . 10
1.3.4 Customizing the render method for different regions . 11
1.3.5 Extra media for content types . 12
1.3.6 Influencing request processing through a content type . 13
1.3.7 Bundled content types . 14
1.3.8 Restricting a content type to a subset of regions . 17
1.3.9 Design considerations for content types . 17
1.3.10 Configuring and self-checking content types at creation time 17
1.3.11 Obtaining a concrete content type model . 17

1.4 Extensions . 18
1.5 Administration interfaces . 19

1.5.1 The tree editor . 19
1.5.2 The item editor . 20
1.5.3 Putting it all together . 23

1.6 Integrating 3rd party apps into your site . 24
1.6.1 Default page handler . 24
1.6.2 Generic and custom views . 24
1.6.3 Integrating 3rd party apps . 24

i

1.7 Media library . 30
1.7.1 Configuration . 31
1.7.2 Rendering media file contents . 31
1.7.3 Media file metadata . 32
1.7.4 Using the media library in your own apps and content types 32

1.8 Template tags . 32
1.8.1 General template tags . 32
1.8.2 Page module-specific template tags . 33
1.8.3 Application content template tags . 36

1.9 Settings . 36
1.9.1 Media library settings . 37
1.9.2 Rich text settings . 37
1.9.3 Settings for the tree editor . 37
1.9.4 Settings for the page module . 37
1.9.5 Various settings . 38

1.10 Database migration support for FeinCMS . 38
1.10.1 Django’s builtin migrations . 38

1.11 Versioning database content with django-reversion . 39
1.12 Advanced topics . 39

1.12.1 feincms.models.Base — CMS base class . 39
1.12.2 feincms.utils — General utilities . 40
1.12.3 Software design considerations . 40
1.12.4 Performance considerations . 41

1.13 Frequently Asked Questions . 42
1.13.1 Should I extend the builtin modules and contents, or should I write my own? 42

1.14 Contributing to the development of FeinCMS . 42
1.14.1 Repository branches . 42

1.15 FeinCMS Deprecation Timeline . 42
1.15.1 1.6 . 42
1.15.2 1.7 . 43
1.15.3 1.8 . 43
1.15.4 1.9 . 44
1.15.5 1.10 . 44
1.15.6 1.11 . 44
1.15.7 1.12 . 44

2 Change log 45
2.1 Next version . 45
2.2 v23.8.0 (2023-08-07) . 45
2.3 v23.1.0 (2023-03-09) . 45
2.4 v22.4.0 (2022-06-02) . 45
2.5 v22.3.0 (2022-05-17) . 45
2.6 v22.2.0 (2022-05-06) . 46
2.7 v22.1.0 (2022-03-31) . 46
2.8 v22.0.0 (2022-01-07) . 46
2.9 v1.20.0 (2021-03-22) . 46
2.10 v1.19.0 (2021-03-04) . 47
2.11 v1.18.0 (2020-01-21) . 47
2.12 v1.17.0 (2019-11-21) . 47
2.13 v1.16.0 (2019-02-01) . 47
2.14 v1.15.0 (2018-12-21) . 47
2.15 v1.14.0 (2018-08-16) . 48

3 Old release notes 49

ii

3.1 FeinCMS 1.13 release notes . 49
3.1.1 Compatibility with Django 1.10 . 49
3.1.2 Backwards-incompatible changes . 49
3.1.3 New deprecations . 49
3.1.4 Notable features and improvements . 49
3.1.5 Bugfixes . 50
3.1.6 Compatibility with Django and other apps . 50

3.2 FeinCMS 1.12 release notes . 50
3.2.1 Template content requires explicit list of templates . 50
3.2.2 The blog module has been completely removed . 51
3.2.3 Caching of pages in various page manager methods has been removed 51
3.2.4 Backwards-incompatible changes . 51
3.2.5 New deprecations . 51
3.2.6 Notable features and improvements . 51
3.2.7 Bugfixes . 51
3.2.8 Compatibility with Django and other apps . 51

3.3 FeinCMS 1.11 release notes . 51
3.3.1 Template inheritance with application contents . 52
3.3.2 Explicit definition of navigation extensions is now possible 52
3.3.3 Backwards-incompatible changes . 52
3.3.4 New deprecations . 53
3.3.5 Notable features and improvements . 53
3.3.6 Bugfixes . 53
3.3.7 Compatibility with Django and other apps . 53

3.4 FeinCMS 1.10 release notes . 53
3.4.1 Full compatibility with the app-loading refactor in Django 1.7 54
3.4.2 TinyMCE 4.1 as default rich text configuration . 54
3.4.3 Home-grown schema checking support has been deactivated 54
3.4.4 A better mechanism for assigning pages to different menu bars 54
3.4.5 Backwards-incompatible changes . 54
3.4.6 New deprecations . 55
3.4.7 Notable features and improvements . 55
3.4.8 Bugfixes . 55
3.4.9 Compatibility with Django and other apps . 55

3.5 FeinCMS 1.9 release notes . 55
3.5.1 Extensions in the item editor . 55
3.5.2 A better way to mark pages as active in the navigation . 55
3.5.3 Backwards-incompatible changes . 56
3.5.4 New deprecations . 56
3.5.5 Notable features and improvements . 56
3.5.6 Bugfixes . 56
3.5.7 Compatibility with Django and other apps . 56

3.6 FeinCMS 1.8 release notes . 56
3.6.1 FeinCMS finally got continuous integration . 57
3.6.2 Preliminary Python 3.3 support . 57
3.6.3 Singleton templates . 57
3.6.4 Dependencies are automatically installed . 57
3.6.5 Backwards-incompatible changes . 57
3.6.6 New deprecations . 58
3.6.7 Notable features and improvements . 58
3.6.8 Bugfixes . 58
3.6.9 Compatibility with Django and other apps . 58

3.7 FeinCMS 1.7 release notes . 58
3.7.1 Extensions-mechanism refactor . 58

iii

3.7.2 View code refactor . 59
3.7.3 Backwards-incompatible changes . 59
3.7.4 Notable features and improvements . 59
3.7.5 Bugfixes . 60
3.7.6 Compatibility with Django and other apps . 60

3.8 FeinCMS 1.6 release notes . 60
3.8.1 Backwards-incompatible changes . 60
3.8.2 Notable features and improvements . 62
3.8.3 Bugfixes . 63

3.9 FeinCMS 1.5 release notes . 63
3.9.1 Explicit reversing of URLs from ApplicationContent-embedded apps 63
3.9.2 Inheritance 2.0 . 64
3.9.3 Better support of InlineModelAdmin options for content types 64
3.9.4 Minor changes . 64

3.10 FeinCMS 1.4 release notes . 65
3.11 FeinCMS 1.3 release notes . 66

3.11.1 Highlights . 66
3.11.2 (Backwards incompatible and other) Changes . 67

3.12 FeinCMS 1.2 release notes . 68
3.12.1 Overview . 68

4 Indices and tables 69

Python Module Index 71

Index 73

iv

FeinCMS Documentation, Release 23.8.0

FeinCMS is an extremely stupid content management system. It knows nothing about content – just enough to create
an admin interface for your own page content types. It lets you reorder page content blocks using a drag-drop interface,
and you can add as many content blocks to a region (f.e. the sidebar, the main content region or something else which
I haven’t thought of yet). It provides helper functions, which provide ordered lists of page content blocks. That’s all.

Adding your own content types is extremely easy. Do you like markdown that much, that you’d rather die than using a
rich text editor? Then add the following code to your project, and you can go on using the CMS without being forced
to use whatever the developers deemed best:

from markdown2 import markdown
from feincms.module.page.models import Page
from django.db import models

class MarkdownPageContent(models.Model):
content = models.TextField()

class Meta:
abstract = True

def render(self, **kwargs):
return markdown(self.content)

Page.create_content_type(MarkdownPageContent)

That’s it. Only ten lines of code for your own page content type.

Contents 1

FeinCMS Documentation, Release 23.8.0

2 Contents

CHAPTER 1

Contents

1.1 Installation instructions

1.1.1 Installation

This document describes the steps needed to install FeinCMS.

FeinCMS requires a working installation of Django version 1.7 or better See the Django documentation for how to
install and configure Django.

You can download a stable release of FeinCMS using pip. Pip will install feincms and its dependencies. Dependen-
cies which are automatically installed are: feedparser, Pillow and django-mptt. For outdated versions of Django the
best place to find supported combinations of library versions is the tox build configuration.

$ pip install feincms

In order to install documentation and tests install from the Git repository instead:

$ git clone git://github.com/feincms/feincms.git

Please be aware that feincms3 is being developed as a separate, new project. For new CMS projects I’m more likely
to use django-content-editor and feincms3. You can read more about feincms3 on https://feincms3.readthedocs.io/en/
latest/

If you are looking to implement a blog, check out elephantblog.

You will also need a Javascript WYSIWYG editor of your choice (Not included). TinyMCE and CKEditor work out
of the box and are recommended.

1.1.2 Configuration

There isn’t much left to do apart from adding a few entries to INSTALLED_APPS. Most commonly you’ll want to
add:

3

http://www.djangoproject.com/
http://www.djangoproject.com/
http://www.feedparser.org/
https://pypi.python.org/pypi/Pillow/
http://github.com/django-mptt/django-mptt/
https://github.com/feincms/feincms/blob/main/tox.ini
http://git-scm.com/
https://feincms3.readthedocs.io/en/latest/
https://feincms3.readthedocs.io/en/latest/
http://github.com/feincms/feincms-elephantblog
http://www.tinymce.com/
http://ckeditor.com/

FeinCMS Documentation, Release 23.8.0

feincms,
mptt,
feincms.module.page,
feincms.module.medialibrary

The customized administration interface needs some media and javascript libraries which you have to make available
to the browser. FeinCMS uses Django’s django.contrib.staticfiles application for this purpose. The
media files will be picked up automatically by the collectstatic management command.

If your website is multi-language you have to define LANGUAGES in the settings.

Please note that the feincms module will not create or need any database tables, but you need to put it into
INSTALLED_APPS because otherwise the templates in feincms/templates/ will not be found by the template
loader.

The tools contained in FeinCMS can be used for many CMS-related activities. The most common use of a CMS is to
manage a hierarchy of pages and this is the most advanced module of FeinCMS too. Please proceed to The built-in
page module to find out how you can get the page module up and running.

1.2 The built-in page module

FeinCMS is primarily a system to work with lists of content blocks which you can assign to arbitrary other objects.
You do not necessarily have to use it with a hierarchical page structure, but that’s the most common use case of course.
Being able to put content together in small manageable pieces is interesting for other uses too, e.g. for weblog entries
where you have rich text content interspersed with images, videos or maybe even galleries.

1.2.1 Activating the page module and creating content types

To activate the page module, you need to follow the instructions in Installation instructions and afterwards add
feincms.module.page to your INSTALLED_APPS.

Before proceeding with manage.py makemigrations and ./manage.py migrate, it might be a good idea
to take a look at Page extension modules – the page module does have the minimum of features in the default configu-
ration and you will probably want to enable several extensions.

You need to create some content models too. No models are created by default, because there is no possibility to
unregister models. A sane default might be to create MediaFileContent and RichTextContent models; you
can do this by adding the following lines somewhere into your project, for example in a models.py file that will be
processed anyway:

from django.utils.translation import gettext_lazy as _

from feincms.module.page.models import Page
from feincms.contents import RichTextContent
from feincms.module.medialibrary.contents import MediaFileContent

Page.register_extensions(
'feincms.extensions.datepublisher',
'feincms.extensions.translations'

) # Example set of extensions

Page.register_templates({
'title': _('Standard template'),
'path': 'base.html',

(continues on next page)

4 Chapter 1. Contents

https://docs.djangoproject.com/en/dev/ref/settings/#languages

FeinCMS Documentation, Release 23.8.0

(continued from previous page)

'regions': (
('main', _('Main content area')),
('sidebar', _('Sidebar'), 'inherited'),

),
})

Page.create_content_type(RichTextContent)
Page.create_content_type(MediaFileContent, TYPE_CHOICES=(

('default', _('default')),
('lightbox', _('lightbox')),

))

It will be a good idea most of the time to register the RichTextContent first, because it’s the most used content
type for many applications. The content type dropdown will contain content types in the same order as they were
registered.

Please note that you should put these statements into a models.py file of an app contained in INSTALLED_APPS.
That file is executed at Django startup time.

1.2.2 Setting up the admin interface

The customized admin interface code is contained inside the ModelAdmin subclass, so you do not need to do any-
thing special here.

If you use the RichTextContent, you need to download TinyMCE and configure FeinCMS’ richtext support:

FEINCMS_RICHTEXT_INIT_CONTEXT = {
'TINYMCE_JS_URL': STATIC_URL + 'your_custom_path/tiny_mce.js',

}

If you want to use a different admin site, or want to apply customizations to the admin class used, add the following
setting to your site-wide settings:

FEINCMS_USE_PAGE_ADMIN = False

1.2.3 Wiring up the views

Just add the following lines to your urls.py to get a catch-all URL pattern:

urlpatterns += [
url(r'', include('feincms.urls')),

]

If you want to define a page as home page for the whole site, you can give it an override_url value of '/'.

More information can be found in Integrating 3rd party apps into your site

1.2.4 Adding another content type

Imagine you’ve got a third-party gallery application and you’d like to include excerpts of galleries inside your content.
You’d need to write a GalleryContent base class and let FeinCMS create a model class for you with some
important attributes added.

1.2. The built-in page module 5

http://www.tinymce.com/

FeinCMS Documentation, Release 23.8.0

from django.db import models
from django.template.loader import render_to_string
from feincms.module.page.models import Page
from gallery.models import Gallery

class GalleryContent(models.Model):
gallery = models.ForeignKey(Gallery)

class Meta:
abstract = True # Required by FeinCMS, content types must be abstract

def render(self, **kwargs):
return render_to_string('gallery/gallerycontent.html', {

'content': self, # Not required but a convention followed by
all of FeinCMS' bundled content types

'images': self.gallery.image_set.order_by('?')[:5],
})

Page.create_content_type(GalleryContent)

The newly created GalleryContent for Page will live in the database table page_page_gallerycontent.

Note: FeinCMS requires your content type model to be abstract.

More information about content types is available in Content types - what your page content is built of .

1.2.5 Page extension modules

Extensions are a way to put often-used functionality easily accessible without cluttering up the core page model for
those who do not need them. The extensions are standard python modules with a register() method which will be
called upon registering the extension. The register() method receives the Page class itself and the model admin
class PageAdmin as arguments. The extensions can be activated as follows:

Page.register_extensions(
'feincms.module.page.extensions.navigation',
'feincms.module.page.extensions.titles',
'feincms.extensions.translations')

The following extensions are available currently:

• feincms.extensions.changedate — Creation and modification dates

Adds automatically maintained creation and modification date fields to the page.

• feincms.extensions.ct_tracker — Content type cache

Helps reduce database queries if you have three or more content types by caching in the database which content
types are available on each page. If this extension is used, Page._ct_inventory has to be nullified after
adding and/or removing content blocks, otherwise changes might not be visible in the frontend. Saving the page
instance accomplishes this.

• feincms.extensions.datepublisher — Date-based publishing

Adds publication date and end date fields to the page, thereby enabling the administrator to define a date range
where a page will be available to website visitors.

• feincms.page.extensions.excerpt — Page summary

6 Chapter 1. Contents

FeinCMS Documentation, Release 23.8.0

Add a brief excerpt summarizing the content of this page.

• feincms.extensions.featured — Simple featured flag for a page

Lets administrators set a featured flag that lets you treat that page special.

• feincms.module.page.extensions.navigation — Navigation extensions

Adds navigation extensions to the page model. You can define subclasses of NavigationExtension, which
provide submenus to the navigation generation mechanism. See Letting 3rd party apps define navigation entries
for more information on how to use this extension.

• feincms.module.page.extensions.navigationgroups — Navigation groups

Adds a navigation group field to each page which can be used to distinguish between the header and footer (or
meta) navigation. Filtering is achieved by passing the group argument to feincms_nav.

• feincms.module.page.extensions.relatedpages — Links related content

Add a many-to-many relationship field to relate this page to other pages.

• feincms.extensions.seo — Search engine optimization

Adds fields to the page relevant for search engine optimization (SEO), currently only meta keywords and de-
scription.

• feincms.module.page.extensions.sites — Limit pages to sites

Allows to limit a page to a certain site and not display it on other sites.

• feincms.module.page.extensions.symlinks — Symlinked content extension

Sometimes you want to reuse all content from a page in another place. This extension lets you do that.

• feincms.module.page.extensions.titles — Additional titles

Adds additional title fields to the page model. You may not only define a single title for the page to be used in
the navigation, the <title> tag and inside the content area, you are not only allowed to define different titles for
the three uses but also enabled to define titles and subtitles for the content area.

• feincms.extensions.translations — Page translations

Adds a language field and a recursive translations many to many field to the page, so that you can define the
language the page is in and assign translations. I am currently very unhappy with state of things concerning
the definition of translations, so that extension might change somewhat too. This extension also adds new
instructions to the setup_request method where the Django i18n tools are initialized with the language given on
the page object.

While it is not required by FeinCMS itself it’s still recommended to add django.middleware.locale.
LocaleMiddleware to the MIDDLEWARE_CLASSES; otherwise you will see strange language switching
behavior in non-FeinCMS managed views (such as third party apps not integrated using feincms.content.
application.models.ApplicationContent or Django’s own administration tool). You need to have
defined settings.LANGUAGES as well.

Note: These extension modules add new fields to the Page class. If you add or remove page extensions you make
and apply new migrations.

1.2.6 Using page request processors

A request processor is a function that gets the currently selected page and the request as parameters and returns either
None (or nothing) or a HttpResponse. All registered request processors are run before the page is actually rendered.

1.2. The built-in page module 7

FeinCMS Documentation, Release 23.8.0

If the request processor indeed returns a HttpResponse, further rendering of the page is cut short and this response
is returned immediately to the client. It is also possible to raise an exception which will be handled like all exceptions
are handled in Django views.

This allows for various actions dependent on page and request, for example a simple user access check can be imple-
mented like this:

def authenticated_request_processor(page, request):
if not request.user.is_authenticated():

raise django.core.exceptions.PermissionDenied

Page.register_request_processor(authenticated_request_processor)

register_request_processor has an optional second argument named key. If you register a request pro-
cessor with the same key, the second processor replaces the first. This is especially handy to replace the standard
request processors named path_active (which checks whether all ancestors of a given page are active too) and
redirect (which issues HTTP-level redirects if the redirect_to page field is filled in).

1.2.7 Using page response processors

Analogous to a request processor, a response processor runs after a page has been rendered. It needs to accept the
page, the request and the response as parameters and may change the response (or throw an exception, but try not to).

A response processor is the right place to tweak the returned http response for whatever purposes you have in mind.

def set_random_header_response_processor(page, request, response):
response['X-Random-Number'] = 42

Page.register_response_processor(set_random_header_response_processor)

register_response_processor has an optional second argument named key, exactly like
register_request_processor above. It behaves in the same way.

1.2.8 WYSIWYG Editors

TinyMCE 3 is configured by default to only allow for minimal formatting. This has proven to be the best compromise
between letting the client format text without destroying the page design concept. You can customize the TinyMCE
settings by creating your own init_richtext.html that inherits from admin/content/richtext/init_tinymce.html. You can
even set your own CSS and linklist files like so:

FEINCMS_RICHTEXT_INIT_CONTEXT = {
'TINYMCE_JS_URL': STATIC_URL + 'your_custom_path/tiny_mce.js',
'TINYMCE_CONTENT_CSS_URL': None, # add your css path here
'TINYMCE_LINK_LIST_URL': None # add your linklist.js path here

}

FeinCMS is set up to use TinyMCE 3 but you can use CKEditor instead if you prefer that one. Change the following
settings:

FEINCMS_RICHTEXT_INIT_TEMPLATE = 'admin/content/richtext/init_ckeditor.html'
FEINCMS_RICHTEXT_INIT_CONTEXT = {

'CKEDITOR_JS_URL': STATIC_URL + 'path_to_your/ckeditor.js',
}

Alternatively, you can also use TinyMCE 4 by changing the following setting:

8 Chapter 1. Contents

http://www.tinymce.com/
http://ckeditor.com/
http://www.tinymce.com/

FeinCMS Documentation, Release 23.8.0

FEINCMS_RICHTEXT_INIT_TEMPLATE = 'admin/content/richtext/init_tinymce4.html'

1.2.9 ETag handling

An ETag is a string that is associated with a page – it should change if (and only if) the page content itself has changed.
Since a page’s content may depend on more than just the raw page data in the database (e.g. it might list its children
or a navigation tree or an excerpt from some other place in the CMS alltogether), you are required to write an etag
producing method for the page.

Very stupid etag function, a page is supposed the unchanged as long
as its id and slug do not change. You definitely want something more
involved, like including last change dates or whatever.
def my_etag(page, request):

return 'PAGE-%d-%s' % (page.id, page.slug)
Page.etag = my_etag

Page.register_request_processors(Page.etag_request_processor)
Page.register_response_processors(Page.etag_response_processor)

1.2.10 Sitemaps

To create a sitemap that is automatically populated with all pages in your Feincms site, add the following to your
top-level urls.py:

from feincms.module.page.sitemap import PageSitemap
sitemaps = {'pages' : PageSitemap}

urlpatterns += [
url(r'^sitemap\.xml$', 'django.contrib.sitemaps.views.sitemap',

{'sitemaps': sitemaps}),
]

This will produce a default sitemap at the /sitemap.xml url. A sitemap can be further customised by passing it appro-
priate parameters, like so:

sitemaps = {'pages': PageSitemap(max_depth=2)}

The following parameters can be used to modify the behaviour of the sitemap:

• navigation_only – if set to True, only pages that are in_navigation will appear in the site map.

• max_depth – if set to a non-negative integer, will limit the sitemap generated to this page hierarchy depth.

• changefreq – should be a string or callable specifying the page update frequency, according to the sitemap
protocol.

• queryset – pass in a query set to restrict the Pages to include in the site map.

• filter – pass in a callable that transforms a queryset to filter out the pages you want to include in the site
map.

• extended_navigation – if set to True, adds pages from any navigation extensions. If using PagePretender,
make sure to include title, url, level, in_navigation and optionally modification_date.

1.2. The built-in page module 9

FeinCMS Documentation, Release 23.8.0

1.3 Content types - what your page content is built of

You will learn how to add your own content types and how you can render them in a template.

1.3.1 What is a content type anyway?

In FeinCMS, a content type is something to attach as content to a base model, for example a CMS Page (the base
model) may have several rich text components associated to it (those would be RichTextContent content types).

Every content type knows, amongst other things, how to render itself. Think of content types as “snippets” of infor-
mation to appear on a page.

1.3.2 Rendering contents in your templates

Simple:

<div id="content">
{% block content %}
{% for content in feincms_page.content.main %}

{{ content.render }}
{% endfor %}
{% endblock %}

</div>

<div id="sidebar">
{% block sidebar %}
{% for content in feincms_page.content.sidebar %}

{{ content.render }}
{% endfor %}
{% endblock %}

</div>

1.3.3 Implementing your own content types

The minimal content type is an abstract Django model with a render() method, nothing else:

class TextileContent(models.Model):
content = models.TextField()

class Meta:
abstract = True

def render(self, **kwargs):
return textile(self.content)

All content types’ render() methods must accept **kwargs. This allows easily extending the interface with
additional parameters. But more on this later.

FeinCMS offers a method on feincms.models.Base called create_content_type() which will create
concrete content types from your abstract content types. Since content types can be used for different CMS base
models such as pages and blog entries (implementing a rich text or an image content once and using it for both models
makes lots of sense) your implementation needs to be abstract. create_content_type() adds a few utility
methods and a few model fields to build the concrete type, a foreign key to the base model (f.e. the Page) and several
properties indicating where the content block will be positioned in the rendered result.

10 Chapter 1. Contents

FeinCMS Documentation, Release 23.8.0

Note: The examples on this page assume that you use the Page CMS base model. The principles outlined apply for
all other CMS base types.

The complete code required to implement and include a custom markdown content type is shown here:

from markdown2 import markdown
from feincms.module.page.models import Page
from django.db import models

class MarkdownPageContent(models.Model):
content = models.TextField()

class Meta:
abstract = True

def render(self, **kwargs):
return markdown(self.content)

Page.create_content_type(MarkdownPageContent)

There are three field names you should not use because they are added by create_content_type: These are
parent, region and ordering. These fields are used to specify the place where the content will be placed in the
output.

1.3.4 Customizing the render method for different regions

The default render method uses the region key to find a render method in your concrete content type and calls it.
This allows you to customize the output depending on the region; you might want to show the same content differently
in a sidebar and in the main region for example. If no matching method has been found a NotImplementedError
is raised.

This render method tries to be a sane default, nothing more. You can simply override it and put your own code there
if you do not any differentiation, or if you want to do it differently.

All render methods should accept **kwargs. Some render methods might need the request, for exam-
ple to determine the correct Google Maps API key depending on the current domain. The two template tags
feincms_render_region and feincms_render_content pass the current rendering context as a keyword
argument too.

The example above could be rewritten like this:

{% load feincms_tags %}

<div id="content">
{% block content %}
{% for content in feincms_page.content.main %}

{% feincms_render_content content request %}
{% endfor %}
{% endblock %}

</div>

<div id="sidebar">
{% block sidebar %}
{% for content in feincms_page.content.sidebar %}

{% feincms_render_content content request %}

(continues on next page)

1.3. Content types - what your page content is built of 11

FeinCMS Documentation, Release 23.8.0

(continued from previous page)

{% endfor %}
{% endblock %}

</div>

Or even like this:

{% load feincms_tags %}

<div id="content">
{% block content %}
{% feincms_render_region feincms_page "main" request %}
{% endblock %}

</div>

<div id="sidebar">
{% block sidebar %}
{% feincms_render_region feincms_page "sidebar" request %}
{% endblock %}

</div>

This does exactly the same, but you do not have to loop over the page content blocks yourself. You need to add the
request context processor to your list of context processors for this example to work.

1.3.5 Extra media for content types

Some content types require extra CSS or javascript to work correctly. The content types have a way of individually
specifying which CSS and JS files they need. The mechanism in use is almost the same as the one used in form and
form widget media.

Include the following code in the <head> section of your template to include all JS and CSS media file definitions:

{{ feincms_page.content.media }}

The individual content types should use a media property do define the media files they need:

from django import forms
from django.db import models
from django.template.loader import render_to_string

class MediaUsingContentType(models.Model):
album = models.ForeignKey('gallery.Album')

class Meta:
abstract = True

@property
def media(self):

return forms.Media(
css={'all': ('gallery/gallery.css',),},
js=('gallery/gallery.js',),
)

def render(self, **kwargs):
return render_to_string('content/gallery/album.html', {

(continues on next page)

12 Chapter 1. Contents

http://docs.djangoproject.com/en/dev/topics/forms/media/
http://docs.djangoproject.com/en/dev/topics/forms/media/

FeinCMS Documentation, Release 23.8.0

(continued from previous page)

'content': self,
})

Please note that you can’t define a Media inner class (yet). You have to provide the media property yourself. As
with form and widget media definitions, either STATIC_URL or MEDIA_URL (in this order) will be prepended to the
media file path if it is not an absolute path already.

Alternatively, you can use the media_property function from django.forms to implement the functionality, which
then also supports inheritance of media files:

from django.forms.widgets import media_property

class MediaUsingContentType(models.Model):
class Media:

js = ('whizbang.js',)

MediaUsingContentType.media = media_property(MediaUsingContentType)

1.3.6 Influencing request processing through a content type

Since FeinCMS 1.3, content types are not only able to render themselves, they can offer two more entry points
which are called before and after the response is rendered. These two entry points are called process() and
finalize().

process() is called before rendering the template starts. The method always gets the current request as first argu-
ment, but should accept **kwargs for later extensions of the interface. This method can short-circuit the request-
response-cycle simply by returning any response object. If the return value is a HttpResponse, the standard
FeinCMS view function does not do any further processing and returns the response right away.

As a special case, if a process() method returns True (for successful processing), Http404 exceptions
raised by any other content type on the current page are ignored. This is especially helpful if you have several
ApplicationContent content types on a single page.

finalize() is called after the response has been rendered. It receives the current request and response objects.
This function is normally used to set response headers inside a content type or do some other post-processing. If this
function has any return value, the FeinCMS view will return this value instead of the rendered response.

Here’s an example form-handling content which uses all of these facilities:

class FormContent(models.Model):
class Meta:

abstract = True

def process(self, request, **kwargs):
if request.method == 'POST':

form = FormClass(request.POST)
if form.is_valid():

Do something with form.cleaned_data ...

return HttpResponseRedirect('?thanks=1')

else:
form = FormClass()

self.rendered_output = render_to_string('content/form.html', {
'form': form,

(continues on next page)

1.3. Content types - what your page content is built of 13

FeinCMS Documentation, Release 23.8.0

(continued from previous page)

'thanks': request.GET.get('thanks'),
})

def render(self, **kwargs):
return getattr(self, 'rendered_output', u'')

def finalize(self, request, response):
Always disable caches if this content type is used somewhere
response['Cache-Control'] = 'no-cache, must-revalidate'

Note: Please note that the rendermethod should not raise an exception if process has not been called beforehand.

Warning: The FeinCMS page module views guarantee that process is called beforehand, other modules may
not do so. feincms.module.blog for instance does not.

1.3.7 Bundled content types

Application content

class feincms.content.application.models.ApplicationContent

Used to let the administrator freely integrate 3rd party applications into the CMS. Described in Integrating 3rd party
apps.

Contact form content

class feincms.content.contactform.models.ContactFormContent

Simple contact form. Also serves as an example how forms might be used inside content types.

Inline files

class feincms.content.file.models.FileContent

Simple content types holding just a file. You should probably use the MediaFileContent though.

Inline images

class feincms.content.image.models.ImageContent

Simple content types holding just an image with a position. You should probably use the MediaFileContent though.

Additional arguments for create_content_type():

• POSITION_CHOICES

• FORMAT_CHOICES

14 Chapter 1. Contents

FeinCMS Documentation, Release 23.8.0

Media library integration

class feincms.module.medialibrary.contents.MediaFileContent

Mini-framework for arbitrary file types with customizable rendering methods per-filetype. Add
‘feincms.module.medialibrary’ to INSTALLED_APPS.

Additional arguments for create_content_type():

• TYPE_CHOICES: (mandatory)

A list of tuples for the type choice radio input fields.

This field allows the website administrator to select a suitable presentation for a particular media file. For
example, images could be shown as thumbnail with a lightbox or offered as downloads. The types should be
specified as follows for this use case:

..., TYPE_CHOICES=(('lightbox', _('lightbox')), ('download', _('as download'))),

The MediaFileContent tries loading the following templates in order for a particular image media file with
type download:

– content/mediafile/image_download.html

– content/mediafile/image.html

– content/mediafile/download.html

– content/mediafile/default.html

The media file type is stored directly on MediaFile.

The file type can also be used to select templates which can be used to further customize the presentation of
mediafiles, f.e. content/mediafile/swf.html to automatically generate the necessary <object> and
<embed> tags for flash movies.

Raw content

class feincms.contents.RawContent

Raw HTML code, f.e. for flash movies or javascript code.

Rich text

class feincms.contents.RichTextContent

Rich text editor widget, stripped down to the essentials; no media support, only a few styles activated.

By default, RichTextContent uses the CDN-served version of TinyMCE 4.1. This can be customized
by overriding FEINCMS_RICHTEXT_INIT_TEMPLATE and FEINCMS_RICHTEXT_INIT_CONTEXT in your
settings.py file.

If you only want to provide a different path to the TinyMCE javascript file, you can do this as follows:

FEINCMS_RICHTEXT_INIT_CONTEXT = {
'TINYMCE_JS_URL': '/your_custom_path/tiny_mce.js',

}

Additional arguments for create_content_type():

1.3. Content types - what your page content is built of 15

FeinCMS Documentation, Release 23.8.0

• cleanse:

Either the dotted python path to a function or a function itself which accepts a HTML string and returns a
cleansed version of it. A library which is often used for this purpose is feincms-cleanse.

CKEditor

Add the following settings to activate CKEditor:

FEINCMS_RICHTEXT_INIT_TEMPLATE = 'admin/content/richtext/init_ckeditor.html'
FEINCMS_RICHTEXT_INIT_CONTEXT = {

See http://cdn.ckeditor.com/ for the latest version:
'CKEDITOR_JS_URL': '//cdn.ckeditor.com/4.4.2/standard/ckeditor.js',

}

Other rich text libraries

Other rich text widgets can be wired up for the RichTextContent. You would have to write two functions: One which
is called when rich text editing functionality is added (“richify”), and another one which is called when functionality
is removed (“poorify”). The second is necessary because rich text editors do not like being dragged; when dragging a
rich text content type, it is first poorified and then richified again as soon as the content type has been dropped into its
final position.

To perform those operations

• Add a function adding the new rich text editor to contentblock_init_handlers and to
contentblock_move_handlers.richify

• Add a function removing the rich text editor to contentblock_move_handlers.poorify

Section content

class feincms.content.section.models.SectionContent

Combined rich text editor, title and media file.

Template content

class feincms.contents.TemplateContent

This is a content type that just renders a template. The available templates have to be specified when creating the
content type:

Page.create_content_type(TemplateContent, TEMPLATES=(
('content/template/something1.html', _('Something 1')),
('content/template/something2.html', _('Something 2')),

))

Also note that a template content is not sandboxed or specially rendered. Whatever a django template can do a
TemplateContent snippet can do too, so be careful whom you grant write permissions.

16 Chapter 1. Contents

https://pypi.python.org/pypi/feincms-cleanse
http://ckeditor.com/

FeinCMS Documentation, Release 23.8.0

Video inclusion code for youtube, vimeo etc.

class feincms.content.video.models.VideoContent

A easy-to-use content type that automatically generates Flash video inclusion code from a website link. Currently
only YouTube and Vimeo links are supported.

1.3.8 Restricting a content type to a subset of regions

Imagine that you have developed a content type which really only makes sense in the sidebar, not in the main content
area. It is very simple to restrict a content type to a subset of regions, the only thing you have to do is pass a tuple of
region keys to the create_content_type method:

Page.create_content_type(SomeSidebarContent, regions=('sidebar',))

Note that the restriction only influences the content types shown in the “Add new item”-dropdown in the item editor.
The user may still choose to add the SomeSidebarContent to the sidebar, for example, and then proceed to move the
content item into the main region.

1.3.9 Design considerations for content types

Because the admin interface is already filled with information, it is sometimes easier to keep the details for certain
models outside the CMS content types. Complicated models do not need to be edited directly in the CMS item
editor, you can instead use the standard Django administration interface for them, and integrate them into FeinCMS by
utilizing foreign keys. Already the bundled FileContent and ImageContent models can be viewed as bad style in this
respect, because if you want to use a image or file more than once you need to upload it for every single use instead
of being able to reuse the uploaded file. The media library module and MediaFileContent resolve at least this issue
nicely by allowing the website administrator to attach metadata to a file and include it in a page by simply selecting
the previously uploaded media file.

1.3.10 Configuring and self-checking content types at creation time

So you’d like to check whether Django is properly configured for your content type, or maybe add model/form fields
depending on arguments passed at content type creation time? This is very easy to achieve. The only thing you need
to do is adding a classmethod named initialize_type() to your content type, and pass additional keyword
arguments to create_content_type().

If you want to see an example of these two uses, have a look at the MediaFileContent.

It is generally recommended to use this hook to configure content types compared to putting the configuration into the
site-wide settings file. This is because you might want to configure the content type differently depending on the CMS
base model that it is used with.

1.3.11 Obtaining a concrete content type model

The concrete content type models are stored in the same module as the CMS base class, but they do not have a name
using which you could import them. Accessing internal attributes is hacky, so what is the best way to get a hold onto
the concrete content type?

There are two recommended ways. The example use a RawContent content type and the Page CMS base class.

You could take advantage of the fact that create_content_type returns the created model:

1.3. Content types - what your page content is built of 17

FeinCMS Documentation, Release 23.8.0

from feincms.module.page.models import Page
from feincms.contents import RawContent

PageRawContent = Page.create_content_type(RawContent)

Or you could use content_type_for():

from feincms.contents import RawContent

PageRawContent = Page.content_type_for(RawContent)

1.4 Extensions

The extensions mechanism has been refactored to remove the need to make models know about their related model
admin classes. The new module feincms.extensions contains mixins and base classes - their purpose is as
follows:

class feincms.extensions.ExtensionsMixin
This mixin provides the register_extensions method which is the place where extensions are registered
for a certain model. Extensions can be specified in the following ways:

• Subclasses of Extension

• Dotted Python module paths pointing to a subclass of the aforementioned extension class

• Dotted Python module paths pointing to a module containing either a class named Extension or a
function named register (for legacy extensions)

class feincms.extensions.Extension
This is the base class for your own extension. It has the following methods and properties:

model
The model class.

handle_model(self)
The method which modifies the Django model class. The model class is available as self.model.

handle_modeladmin(self, modeladmin)
This method receives the model admin instance bound to the model. This method could be called more
than once, especially when using more than one admin site.

class feincms.extensions.ExtensionModelAdmin
This is a model admin subclass which knows about extensions, and lets the extensions do their work modifying
the model admin instance after it has been successfully initialized. It has the following methods and properties:

initialize_extensions(self)
This method is automatically called at the end of initialization and loops through all registered extensions
and calls their handle_modeladmin method.

add_extension_options(self, *f)
This is a helper to add fields and fieldsets to a model admin instance. Usage is as follows:

modeladmin.add_extension_options('field1', 'field2')

Or:

18 Chapter 1. Contents

FeinCMS Documentation, Release 23.8.0

modeladmin.add_extension_options(_('Fieldset title'), {
'fields': ('field1', 'field2'),
})

Note: Only model and admin instances which inherit from ExtensionsMixin and ExtensionModelAdmin
can be extended this way.

1.5 Administration interfaces

FeinCMS provides two ModelAdmin classes, ItemEditor, and TreeEditor. Their purpose and their customiza-
tion hooks are briefly discussed here.

1.5.1 The tree editor

class feincms.admin.tree_editor.TreeEditor

The tree editor replaces the standard change list interface with a collapsible item tree. The model must be registered
with django-mptt for this to work.

Usage is as follows:

from django.db import models
from mptt.fields import TreeForeignKey
from mptt.models import MPTTModel

class YourModel(MPTTModel):
model field definitions

parent = TreeForeignKey('self', null=True, blank=True, related_name='children')

(continues on next page)

1.5. Administration interfaces 19

http://github.com/django-mptt/django-mptt/

FeinCMS Documentation, Release 23.8.0

(continued from previous page)

class Meta:
ordering = ['tree_id', 'lft'] # The TreeEditor needs this ordering definition

And inside your admin.py file:

from django.contrib import admin
from feincms.admin import tree_editor
from yourapp.models import YourModel

class YourModelAdmin(tree_editor.TreeEditor):
pass

admin.site.register(YourModel, YourModelAdmin)

All standard ModelAdmin attributes such as ModelAdmin.list_display, ModelAdmin.
list_editable, ModelAdmin.list_filter work as normally. The only exception to this rule is the
column showing the tree structure (the second column in the image). There, we always show the value of
Model.__str__ currently.

AJAX checkboxes

The tree editor allows you to define boolean columns which let the website administrator change the value of the
boolean using a simple click on the icon. These boolean columns can be aware of the tree structure. For example, if
an object’s active flag influences the state of its descendants, the tree editor interface is able to show not only the
state of the modified element, but also the state of all its descendants without having to reload the page.

Currently, documentation for this feature is not available yet. You can take a look at the implementation of the
is_visible and in_navigation columns of the page editor however.

Usage:

from django.contrib import admin
from feincms.admin import tree_editor
import mptt

class Category(models.Model):
active = models.BooleanField()
name = models.CharField(...)
parent = models.ForeignKey('self', blank=True, null=True)

...
mptt.register(Category)

class CategoryAdmin(tree_editor.TreeEditor):
list_display = ('__str__', 'active_toggle')
active_toggle = tree_editor.ajax_editable_boolean('active', _('active'))

1.5.2 The item editor

class feincms.admin.item_editor.ItemEditor

The tabbed interface below is used to edit content and other properties of the edited object. A tab is shown for every
region of the template or element, depending on whether templates are activated for the object in question1.

1 Templates are required for the page module; blog entries managed through the item editor probably won’t have a use for them.

20 Chapter 1. Contents

FeinCMS Documentation, Release 23.8.0

Here’s a screenshot of a content editing pane. The media file content is collapsed currently. New items can be added
using the control bar at the bottom, and all content blocks can be reordered using drag and drop:

Customizing the item editor

New in version 1.2.0.

• The ItemEditor now plays nicely with standard Django fieldsets; the content-editor is rendered as a
replacement for a fieldset with the placeholder name matching FEINCMS_CONTENT_FIELDSET_NAME. If
no such fieldset is present, one is inserted at the top automatically. If you wish to customise the location of the
content-editor, simple include this fieldset at the desired location:

1.5. Administration interfaces 21

FeinCMS Documentation, Release 23.8.0

from feincms.admin.item_editor import ItemEditor, FEINCMS_CONTENT_FIELDSET

class MyAdmin(ItemEditor):
fieldsets = (

('Important things', {'fields': ('title', 'slug', 'etc')}),
FEINCMS_CONTENT_FIELDSET,
('Less important things',

{
'fields': ('copyright', 'soforth'),
'classes': ('collapse',)

}
)

)

Customizing the individual content type forms

Customizing the individual content type editors is easily possible through four settings on the content type model
itself:

• feincms_item_editor_context_processors:

A list of callables using which you may add additional values to the item editor templates.

• feincms_item_editor_form:

You can specify the base class which should be used for the content type model. The default value is
django.forms.ModelForm. If you want to customize the form, chances are it is a better idea to set
feincms_item_editor_inline instead.

• feincms_item_editor_includes:

If you need additional JavaScript or CSS files or need to perform additional initialization on your content type
forms, you can specify template fragments which are included in predefined places into the item editor.

Currently, the only include region available is head:

class ContentType(models.Model):
feincms_item_editor_includes = {

'head': ['content/init.html'],
}

...

If you need to execute additional Javascript, for example to add a TinyMCE instance, it is recommended to add
the initialization functions to the contentblock_init_handlers array, because the initialization needs
to be performed not only on page load, but also when adding new content blocks. Please note that these functions
will be called several times, also several times on the same content types. It is your responsibility to ensure that
the handlers aren’t attached several times if this would be harmful.

Additionally, several content types do not support being dragged. Rich text editors such as TinyMCE react
badly to being dragged around - they are still visible, but the content disappears and nothing is clickable any-
more. Because of this you might want to run routines before and after moving content types around. This is
achieved by adding your JavaScript functions to the contentblock_move_handlers.poorify array
for handlers to be executed before moving and contentblock_move_handlers.richify for handlers
to be executed after moving. Please note that the item editor executes all handlers on every drag and drop, it is
your responsibility to ensure that code is only executed if it has to.

Take a look at the richtext item editor include files to understand how this should be done.

22 Chapter 1. Contents

FeinCMS Documentation, Release 23.8.0

• feincms_item_editor_inline:

New in version 1.4.0.

This can be used to override the InlineModelAdmin class used for the content type. The custom inline
should inherit from FeinCMSInline or be configured the same way.

If you override fieldsets or fields you must include region and ordering even though they aren’t
shown in the administration interface.

1.5.3 Putting it all together

It is possible to build a limited, but fully functional page CMS administration interface using only the following code
(urls.py and views.py are missing):

models.py:

from django.db import models
from mptt.models import MPTTModel
from feincms.models import create_base_model

class Page(create_base_model(MPTTModel)):
active = models.BooleanField(default=True)
title = models.CharField(max_length=100)
slug = models.SlugField()

parent = models.ForeignKey('self', blank=True, null=True, related_name='children')

def get_absolute_url(self):
if self.parent_id:

return u'%s%s/' % (self.parent.get_absolute_url(), self.slug)
return u'/%s/' % self.slug

admin.py:

from django.contrib import admin
from feincms.admin import item_editor, tree_editor
from myapp.models import Page

class PageAdmin(item_editor.ItemEditor, tree_editor.TreeEditor):
fieldsets = [

(None, {
'fields': ['active', 'title', 'slug'],
}),

item_editor.FEINCMS_CONTENT_FIELDSET,
]

list_display = ['active', 'title']
prepopulated_fields = {'slug': ('title',)}
raw_id_fields = ['parent']
search_fields = ['title', 'slug']

admin.site.register(Page, PageAdmin)

For a more complete (but also more verbose) implementation, have a look at the files inside feincms/module/
page/.

1.5. Administration interfaces 23

FeinCMS Documentation, Release 23.8.0

1.6 Integrating 3rd party apps into your site

With FeinCMS come a set of standard views which you might want to check out before starting to write your own.

1.6.1 Default page handler

The default CMS handler view is feincms.views.cbv.handler. You can add the following as last line in your
urls.py to make a catch-all for any pages which were not matched before:

from feincms.views import Handler
handler = Handler.as_view()

urlpatterns += [
url(r'^$', handler, name='feincms_home'),
url(r'^(.*)/$', handler, name='feincms_handler'),

]

Note that this default handler can also take a keyword parameter path to specify which url to render. You can use
that functionality to implement a default page by adding another entry to your urls.py:

from feincms.views import Handler
handler = Handler.as_view()

...
url(r'^$', handler, {'path': '/rootpage'},

name='feincms_home')
...

Please note that it’s easier to include feincms.urls at the bottom of your own URL patterns like this:

...

urlpatterns += [
url(r'', include('feincms.urls')),

]

The URLconf entry names feincms_home and feincms_handler must both exist somewhere in your project.
The standard feincms.urls contains definitions for both. If you want to provide your own view, it’s your respon-
sability to create correct URLconf entries.

1.6.2 Generic and custom views

If you use FeinCMS to manage your site, chances are that you still want to use generic and/or custom views for
certain parts. You probably still need a feincms_page object inside your template to generate the navigation
and render regions not managed by the generic views. The best way to ensure the presence of a feincms_page
instance in the template context is to add feincms.context_processors.add_page_if_missing to your
TEMPLATE_CONTEXT_PROCESSORS setting.

1.6.3 Integrating 3rd party apps

Third party apps such as django-registration can be integrated in the CMS too. ApplicationContent lets you
delegate a subset of your page tree to a third party application. The only thing you need is specifying a URLconf file
which is used to determine which pages exist below the integration point.

24 Chapter 1. Contents

FeinCMS Documentation, Release 23.8.0

Adapting the 3rd party application for FeinCMS

The integration mechanism is very flexible. It allows the website administrator to add the application in multiple
places or move the integration point around at will. Obviously, this flexibility puts several constraints on the appli-
cation developer. It is therefore probable, that you cannot just drop in a 3rd party application and expect it to work.
Modifications of urls.py and the templates will be required.

The following examples all assume that we want to integrate a news application into FeinCMS. The
ApplicationContent will be added to the page at /news/, but that’s not too important really, because the
3rd party app’s assumption about where it will be integrated can be too easily violated.

An example urls.py follows:

from django.conf.urls import include, url
from django.views.generic.detail import DetailView
from django.views.generic.list import ListView
from news.models import Entry

urlpatterns = [
url(r'^$', ListView.as_view(

queryset=Entry.objects.all(),
), name='entry_list'),

url(r'^(?P<slug>[^/]+)/$', DetailView.as_view(
queryset=Entry.objects.all(),
), name='entry_detail'),

]

Please note that you should not add the news/ prefix here. You should not reference this urls.py file anywhere in
a include statement.

Registering the 3rd party application with FeinCMS’ ApplicationContent

It’s as simple as that:

from feincms.content.application.models import ApplicationContent
from feincms.module.page.models import Page

Page.create_content_type(ApplicationContent, APPLICATIONS=(
('news.urls', 'News application'),

))

Writing the models

Because the URLconf entries entry_list and entry_detail aren’t reachable through standard means (remem-
ber, they aren’t included anywhere) it’s not possible to use standard reverse calls to determine the absolute
URL of a news entry. FeinCMS provides its own app_reverse function (see More on reversing URLs for details)
mimicking the interface of Django’s standard functionality:

from django.db import models
from feincms.content.application.models import app_reverse

class Entry(models.Model):
title = models.CharField(max_length=200)
slug = models.SlugField()

(continues on next page)

1.6. Integrating 3rd party apps into your site 25

FeinCMS Documentation, Release 23.8.0

(continued from previous page)

description = models.TextField(blank=True)

class Meta:
ordering = ['-id']

def __str__(self):
return self.title

def get_absolute_url(self):
return app_reverse('entry_detail', 'news.urls', kwargs={

'slug': self.slug,
})

The only difference is that you do not only have to specify the view name (entry_detail) but also the URLconf
file (news.urls). The URLconf string must correspond to the specification used in the APPLICATIONS list in the
create_content_type call.

Note: Old FeinCMS versions only provided a monkey patched reverse method with a slightly different syntax for
reversing URLs. This behavior has been removed some time ago.

Returning content from views

Three different types of return values can be handled by the application content code:

• Unicode data (e.g. the return value of render_to_string)

• HttpResponse instances

• A tuple consisting of two elements: A template instance, template name or list and a context dict. More on
this later under Letting the application content use the full power of Django’s template inheritance

Unicode data is inserted verbatim into the output. HttpResponse instances are returned directly to the client under
the following circumstances:

• The HTTP status code differs from 200 OK (Please note that 404 errors may be ignored if more than one
content type with a process method exists on the current CMS page.)

• The resource was requested by XmlHttpRequest (that is, request.is_ajax returns True)

• The response was explicitly marked as standalone by the feincms.views.decorators.
standalone() view decorator (made easier by mixing-in feincms.module.mixins.
StandaloneView)

• The mimetype of the response was not text/plain or text/html

Otherwise, the content of the response is unpacked and inserted into the CMS output as unicode data as if the view
returned the content directly, not wrapped into a HttpResponse instance.

If you want to customize this behavior, provide your own subclass of ApplicationContent with an overridden
send_directly method. The described behavior is only a sane default and might not fit everyone’s use case.

Note: The string or response returned should not contain <html> or <body> tags because this would invalidate the
HTML code returned by FeinCMS.

26 Chapter 1. Contents

FeinCMS Documentation, Release 23.8.0

Letting the application content use the full power of Django’s template inheritance

If returning a simple unicode string is not enough and you’d like to modify different blocks in the base template, you
have to ensure two things:

• Use the class-based page handler. This is already the default if you include feincms.urls or feincms.
views.cbv.urls.

• Make sure your application views use the third return value type described above: A tuple consisting of a
template and a context dict.

The news application views would then look as follows. Please note the absence of any template rendering calls:

views.py:

from django.shortcuts import get_object_or_404
from news.models import Entry

def entry_list(request):
Pagination should probably be added here
return 'news/entry_list.html', {'object_list': Entry.objects.all()}

def entry_detail(request, slug):
return 'news/entry_detail', {'object': get_object_or_404(Entry, slug=slug)}

urls.py:

from django.conf.urls import url

from news.views import entry_list, entry_detail

urlpatterns = [
url(r'^$', entry_list, name='entry_list'),
url(r'^(?P<slug>[^/]+)/$', entry_detail, name='entry_detail'),

]

The two templates referenced, news/entry_list.html and news/entry_detail.html, should now ex-
tend a base template. The recommended notation is as follows:

{% extends feincms_page.template.path|default:"base.html" %}

{% block ... %}
{# more content snipped #}

This ensures that the the selected CMS template is still used when rendering content.

Note: Older versions of FeinCMS only offered fragments for a similar purpose. They are still supported, but it’s
recommended you switch over to this style instead.

Warning: If you add two application content blocks on the same page and both use this mechanism, the later
‘wins’.

More on reversing URLs

Application content-aware URL reversing is available both for Python and Django template code.

1.6. Integrating 3rd party apps into your site 27

FeinCMS Documentation, Release 23.8.0

The function works almost like Django’s own reverse()method except that it resolves URLs from application con-
tents. The second argument, urlconf, has to correspond to the URLconf parameter passed in the APPLICATIONS
list to Page.create_content_type:

from feincms.content.application.models import app_reverse
app_reverse('mymodel-detail', 'myapp.urls', args=...)

or:

app_reverse('mymodel-detail', 'myapp.urls', kwargs=...)

The template tag has to be loaded from the applicationcontent_tags template tag library first:

{% load applicationcontent_tags %}
{% app_reverse "mymodel_detail" "myapp.urls" arg1 arg2 %}

or:

{% load applicationcontent_tags %}
{% app_reverse "mymodel_detail" "myapp.urls" name1=value1 name2=value2 %}

Storing the URL in a context variable is supported too:

{% load applicationcontent_tags %}
{% app_reverse "mymodel_detail" "myapp.urls" arg1 arg2 as url %}

Inside the app (in this case, inside the views defined in myapp.urls), you can also pass the current request instance
instead of the URLconf name.

If an application has been added several times to the same page tree, app_reverse tries to find the best match. The
logic is contained inside ApplicationContent.closest_match, and can be overridden by subclassing the
application content type. The default implementation only takes the current language into account, which is mostly
helpful when you’re using the translations page extension.

Additional customization possibilities

The ApplicationContent offers additional customization possibilites for those who need them. All of these
must be specified in the APPLICATIONS argument to create_content_type.

• urls: Making it easier to swap the URLconf file:

You might want to use logical names instead of URLconf paths when you create your content types, so that
the ApplicationContent apps aren’t tied to a particular urls.py file. This is useful if you want to
override a few URLs from a 3rd party application, f.e. replace registration.urls with yourapp.
registration_urls:

Page.create_content_type(ApplicationContent, APPLICATIONS=(
('registration', 'Account creation and management', {

'urls': 'yourapp.registration_urls',
}),

)

• admin_fields: Adding more fields to the application content interface:

Some application contents might require additional configuration parameters which should be modifyable by
the website administrator. admin_fields to the rescue!

28 Chapter 1. Contents

FeinCMS Documentation, Release 23.8.0

def registration_admin_fields(form, *args, **kwargs):
return {

'exclusive_subpages': forms.BooleanField(
label=_('Exclusive subpages'),
required=False,
initial=form.instance.parameters.get('exclusive_subpages', True),
help_text=_('Exclude everything other than the application\'s content

→˓when rendering subpages.'),
),

}

Page.create_content_type(ApplicationContent, APPLICATIONS=(
('registration', 'Account creation and management', {

'urls': 'yourapp.registration_urls',
'admin_fields': registration_admin_fields,

}),
)

The form fields will only be visible after saving the ApplicationContent for the first time. They are stored
inside a JSON-encoded field. The values are added to the template context indirectly when rendering the main
template by adding them to request._feincms_extra_context.

• path_mapper: Customize URL processing by altering the perceived path of the page:

The applicaton content uses the remainder of the URL to resolve the view inside the 3rd party application by
default. This works fine most of the time, sometimes you want to alter the perceived path without modifying the
URLconf file itself.

If provided, the path_mapper receives the three arguments, request.path, the URL of the current page
and all application parameters, and must return a tuple consisting of the path to resolve inside the application
content and the path the current page is supposed to have.

This path_mapper function can be used to do things like rewrite the path so you can pretend that an app is
anchored deeper than it actually is (e.g. /path/to/page is treated as “/<slug>/” using a parameter value rather
than “/” by the embedded app)

• view_wrapper: Decorate every view inside the application content:

If the customization possibilites above aren’t sufficient, view_wrapper can be used to decorate each and
every view inside the application content with your own function. The function specified with view_wrapper
receives an additional parameters besides the view itself and any arguments or keyword arguments the URLconf
contains, appcontent_parameters containing the application content configuration.

Letting 3rd party apps define navigation entries

Short answer: You need the feincms.module.page.extensions.navigation extension module. Activate
it like this:

Page.register_extensions('feincms.module.page.extensions.navigation')

Please note however, that this call needs to come after all NavigationExtension subclasses have been processed,
because otherwise they will not be available for selection in the page administration! (Yes, this is lame and yes, this
is going to change as soon as we find a better solution. In the meantime, stick your subclass definition before the
register_extensions call.)

Because the use cases for extended navigations are so different, FeinCMS does not go to great lengths trying to cover
them all. What it does though is to let you execute code to filter, replace or add navigation entries when generating a
list of navigation entries.

1.6. Integrating 3rd party apps into your site 29

FeinCMS Documentation, Release 23.8.0

If you have a blog and you want to display the blog categories as subnavigation entries, you could do it as follows:

1. Create a navigation extension for the blog categories

2. Assign this navigation extension to the CMS page where you want these navigation entries to appear

You don’t need to do anything else as long as you use the built-in feincms_nav template tag – it knows how to
handle extended navigations.

from feincms.module.page.extensions import navigation

class BlogCategoriesNavigationExtension(navigation.NavigationExtension):
name = _('blog categories')

def children(self, page, **kwargs):
for category in Category.objects.all():

yield navigation.PagePretender(
title=category.name,
url=category.get_absolute_url(),

)

class PassthroughExtension(navigation.NavigationExtension):
name = 'passthrough extension'

def children(self, page, **kwargs):
for p in page.children.in_navigation():

yield p

class MyExtension(navigation.Extension):
navigation_extensions = [

BlogCategoriesNavigationExtension,
PassthroughExtension,
Alternatively, a dotted Python path also works.

]

Page.register_extensions(MyExtension)

Note that the objects returned should at least try to mimic a real page so navigation template tags as
siblings_along_path_to and friends continue to work, ie. at least the following attributes should exist:

title = '(whatever)'
url = '(whatever)'

Attributes that MPTT assumes to exist
parent_id = page.id
tree_id = page.tree_id
level = page.level+1
lft = page.lft
rght = page.rght

1.7 Media library

The media library module provides a way to store, transform and display files of arbitrary types.

The following instructions assume, that you use the media library together with the page module. However, the media
library does not depend on any aspect of the page module – you can use it with any CMS base model.

30 Chapter 1. Contents

FeinCMS Documentation, Release 23.8.0

To activate the media library and use it together with the page module, it is best to first get the page module work-
ing with a few content types. Afterwards, add feincms.module.medialibrary to your INSTALLED_APPS
setting, and create a content type for a media file as follows:

from feincms.module.page.models import Page
from feincms.content.medialibrary.contents import MediaFileContent

Page.create_content_type(MediaFileContent, TYPE_CHOICES=(
('default', _('default')),
('lightbox', _('lightbox')),

))

TYPE_CHOICES has nothing to do with file types – it’s about choosing the presentation type for a certain media file,
f.e. whether the media file should be presented inline, in a lightbox, floated, or simply as a download link.

1.7.1 Configuration

The location and URL of the media library may be configured either by setting the appropriate variables in your
settings.py file or in your CMS defining module.

The file system path for all media library files is defined using Django’s MEDIA_ROOT setting and FeinCMS’
FEINCMS_MEDIALIBRARY_UPLOAD_TO setting which defaults to medialibrary/%Y/%m/.

These settings can also be changed programmatically using MediaFile.reconfigure(upload_to=...,
storage=...)

1.7.2 Rendering media file contents

A set of recognition functions will be run on the file name to determine the file type. Using combinations of the name
and type, the default render method tries to find a template for rendering the MediaFileBase.

The default set of pre-defined content types and recognition functions is:

MediaFileBase.register_filetypes(
('image', _('Image'), lambda f: re.compile(r'\.(bmp|jpe?g|jp2|jxr|gif|png|tiff?)$

→˓', re.IGNORECASE).search(f)),
('video', _('Video'), lambda f: re.compile(r'\.(mov|m[14]v|mp4|avi|mpe?

→˓g|qt|ogv|wmv)$', re.IGNORECASE).search(f)),
('audio', _('Audio'), lambda f: re.compile(r'\.(au|mp3|m4a|wma|oga|ram|wav)$', re.

→˓IGNORECASE).search(f)),
('pdf', _('PDF document'), lambda f: f.lower().endswith('.pdf')),
('swf', _('Flash'), lambda f: f.lower().endswith('.swf')),
('txt', _('Text'), lambda f: f.lower().endswith('.txt')),
('rtf', _('Rich Text'), lambda f: f.lower().endswith('.rtf')),
('zip', _('Zip archive'), lambda f: f.lower().endswith('.zip')),
('doc', _('Microsoft Word'), lambda f: re.compile(r'\.docx?$', re.IGNORECASE).

→˓search(f)),
('xls', _('Microsoft Excel'), lambda f: re.compile(r'\.xlsx?$', re.IGNORECASE).

→˓search(f)),
('ppt', _('Microsoft PowerPoint'), lambda f: re.compile(r'\.pptx?$', re.

→˓IGNORECASE).search(f)),
('other', _('Binary'), lambda f: True), # Must be last

)

You can add to that set by calling MediaFile.register_filetypes() with your new file types similar to the
above.

1.7. Media library 31

FeinCMS Documentation, Release 23.8.0

If we’ve got an example file 2009/06/foobar.jpg and a presentation type of inline, the templates tried to
render the media file are the following:

• content/mediafile/image_inline.html

• content/mediafile/image.html

• content/mediafile/inline.html

• content/mediafile/default.html

You are of course free to do with the file what you want inside the template, for example a thumbnail and a lightbox
version of the image file, and put everything into an element that’s floated to the left.

1.7.3 Media file metadata

Sometimes, just storing media files is not enough. You’ve got captions and copyrights which you’d like to store
alongside the media file. This media library allows that. The caption may even be translated into different languages.
This is most often not necessary or does not apply to copyrights, therefore the copyright can only be entered once, not
once per language.

The default image template content/mediafile/image.html demonstrates how the values of those fields can
be retrieved and used.

1.7.4 Using the media library in your own apps and content types

There are a few helpers that allow you to have a nice raw_id selector and thumbnail preview in your own apps and
content types that have a ForeignKey to MediaFile.

To have a thumbnail preview in your ModelAdmin and Inline class:

from feincms.module.medialibrary.fields import MediaFileForeignKey

class ImageForProject(models.Model):
project = models.ForeignKey(Project)
mediafile = MediaFileForeignKey(

MediaFile, related_name='+',
limit_choices_to={'type': 'image'})

For the maginfying-glass select widget in your content type inherit your inline from FeinCMSInline:

class MyContentInline(FeinCMSInline):
raw_id_fields = ('mediafile',)

class MyContent(models.Model):
feincms_item_editor_inline = MyContentInline

1.8 Template tags

1.8.1 General template tags

To use the template tags described in this section, you need to load the feincms_tags template tag library:

{% load feincms_tags %}

32 Chapter 1. Contents

FeinCMS Documentation, Release 23.8.0

feincms_render_region:

feincms_render_content:
Some content types will need the request object to work properly. Contact forms will need to access
POSTed data, a Google Map content type needs to use a different API key depending on the current
domain etc. This means you should add django.core.context_processors.request to your
TEMPLATE_CONTEXT_PROCESSORS.

These two template tags allow you to pass the request from the template to the content type.
feincms_render_content() allows you to surround the individual content blocks with custom markup,
feincms_render_region() simply concatenates the output of all content blocks:

{% load feincms_tags %}

{% feincms_render_region feincms_page "main" request %}

or::

{% load feincms_tags %}

{% for content in feincms_page.content.main %}
<div class="block">

{% feincms_render_content content request %}
</div>

{% endfor %}

Both template tags add the current rendering context to the render method call too. This means that you can
access both the request and the current context inside your content type as follows:

class MyContentType(models.Model):
class Meta etc...

def render(self, **kwargs):
request = kwargs.get('request')
context = kwargs.get('context')

1.8.2 Page module-specific template tags

All page module-specific template tags are contained in feincms_page_tags:

{% load feincms_page_tags %}

feincms_nav:
Return a list of pages to be used for the navigation

level: 1 = toplevel, 2 = sublevel, 3 = sub-sublevel depth: 1 = only one level, 2 = subpages too group: Only used
with the navigationgroups extension

If you set depth to something else than 1, you might want to look into the tree_info template tag from the
mptt_tags library.

Example:

{% load feincms_page_tags %}

{% feincms_nav feincms_page level=2 depth=1 as sublevel %}
{% for p in sublevel %}

(continues on next page)

1.8. Template tags 33

FeinCMS Documentation, Release 23.8.0

(continued from previous page)

{{ p.title }}
{% endfor %}

Example for outputting only the footer navigation when using the default configuration of the
navigationgroups page extension:

{% load feincms_page_tags %}

{% feincms_nav feincms_page level=2 depth=1 group='footer' as meta %}
{% for p in sublevel %}

{{ p.title }}
{% endfor %}

siblings_along_path_to:
This is a filter designed to work in close conjunction with the feincms_nav template tag describe above to
build a navigation tree following the path to the current page.

Example:

{% feincms_nav feincms_page level=1 depth=3 as navitems %}
{% with navitems|siblings_along_path_to:feincms_page as navtree %}

{% recursetree navtree %}

* {{ node.short_title }}

{% if children %}

<div style="margin-left: 20px">{{ children }}</div>
{% endif %}

{% endrecursetree %}
{% endwith %}

For helper function converting a tree of pages into an HTML representation please see the mptt_tags library’s
tree_info and recursetree.

feincms_parentlink:
Return a link to an ancestor of the passed page.

You’d determine the link to the top level ancestor of the current page like this:

{% load feincms_page_tags %}

{% feincms_parentlink of feincms_page level=1 %}

Please note that this is not the same as simply getting the URL of the parent of the current page.

feincms_languagelinks:
This template tag needs the translations extension.

Arguments can be any combination of:

• all or existing: Return all languages or only those where a translation exists

• excludecurrent: Excludes the item in the current language from the list

The default behavior is to return an entry for all languages including the current language.

Example:

{% load feincms_page_tags %}

{% feincms_languagelinks for feincms_page as links all,excludecurrent %}

(continues on next page)

34 Chapter 1. Contents

FeinCMS Documentation, Release 23.8.0

(continued from previous page)

{% for key, name, link in links %}
{% trans

→˓name %}
{% endfor %}

feincms_translatedpage:
This template tag needs the translations extension.

Returns the requested translation of the page if it exists. If the language argument is omitted the primary
language will be returned (the first language specified in settings.LANGUAGES):

{% load feincms_page_tags %}

{% feincms_translatedpage for feincms_page as feincms_transpage language=en %}
{% feincms_translatedpage for feincms_page as originalpage %}
{% feincms_translatedpage for some_page as translatedpage language=feincms_page.
→˓language %}

feincms_translatedpage_or_base:
This template tag needs the translations extensions.

Similar in function and arguments to feincms_translatedpage, but if no translation for the requested language
exists, the base language page will be returned:

{% load feincms_page_tags %}

{% feincms_translatedpage_or_base for some_page as some_transpage language=gr %}

feincms_breadcrumbs:

{% load feincms_page_tags %}

{% feincms_breadcrumbs feincms_page %}

is_parent_of:

{% load feincms_page_tags %}

{% if page1|is_parent_of:page2 %}
page1 is a parent of page2

{% endif %}

is_equal_or_parent_of:

{% load feincms_page_tags %}

{% feincms_nav feincms_page level=1 as main %}
{% for entry in main %}

<a {% if entry|is_equal_or_parent_of:feincms_page %}class="mark"{% endif %}
href="{{ entry.get_absolute_url }}">{{ entry.title }}

{% endfor %}

page_is_active:
The advantage of page_is_active compared to the previous tags is that it also nows how to handle page

1.8. Template tags 35

FeinCMS Documentation, Release 23.8.0

pretenders. If entry is a page pretender, the template tag returns True if the current path starts with the page
pretender’s path. If entry is a regular page, the logic is the same as in is_equal_or_parent_of.

{% load feincms_page_tags %}
{% feincms_nav feincms_page level=1 as main %}
{% for entry in main %}

{% page_is_active entry as is_active %}
<a {% if is_active %}class="mark"{% endif %}

href="{{ entry.get_absolute_url }}">{{ entry.title }}
{% endfor %}

The values of feincms_page (the current page) and the current path are pulled out of the context variables
feincms_page and request. They can also be overriden if you so require:

{% page_is_active entry feincms_page=something path=request.path %}

1.8.3 Application content template tags

app_reverse:
Returns an absolute URL for applications integrated with ApplicationContent

The tag mostly works the same way as Django’s own {% url %} tag:

{% load applicationcontent_tags %}
{% app_reverse "mymodel_detail" "myapp.urls" arg1 arg2 %}

or:

{% load applicationcontent_tags %}
{% app_reverse "mymodel_detail" "myapp.urls" name1=value1 name2=value2 %}

The first argument is a path to a view. The second argument is the URLconf under which this app is known to
the ApplicationContent.

Other arguments are space-separated values that will be filled in place of positional and keyword arguments in
the URL. Don’t mix positional and keyword arguments.

If you want to store the URL in a variable instead of showing it right away you can do so too:

{% app_reverse "mymodel_detail" "myapp.urls" arg1 arg2 as url %}

fragment:

get_fragment:
Don’t use those, read up on Letting the application content use the full power of Django’s template inheritance
instead.

1.9 Settings

FeinCMS has a few installation-wide settings which you might want to customize.

The default settings can be found inside feincms.default_settings. FeinCMS reads the settings from
feincms.settings – values should be overridden by placing them in your project’s settings.

36 Chapter 1. Contents

FeinCMS Documentation, Release 23.8.0

1.9.1 Media library settings

FEINCMS_MEDIALIBRARY_UPLOAD_TO: Defaults to medialibrary/%Y/%m. Defines the location of newly
uploaded media files.

FEINCMS_MEDIALIBRARY_THUMBNAIL: Defaults to feincms.module.medialibrary.thumbnail.
default_admin_thumbnail. The path to a function which should return the URL to a thumbnail or None
for the mediafile instance passed as first argument.

FEINCMS_MEDIAFILE_OVERWRITE: Defaults to False. Set this to True if uploads should replace previous files
using the same path if possible. This allows copy-pasted paths to work, but prevents using far future expiry headers
for media files. Also, it might not work with all storage backends.

1.9.2 Rich text settings

FEINCMS_RICHTEXT_INIT_TEMPLATE: Defaults to admin/content/richtext/init_tinymce4.
html. The template which contains the initialization snippet for the rich text editor. Bundled templates are:

• admin/content/richtext/init_tinymce.html for TinyMCE 3.x.

• admin/content/richtext/init_tinymce4.html for TinyMCE 4.x.

• admin/content/richtext/init_ckeditor.html for CKEditor.

FEINCMS_RICHTEXT_INIT_CONTEXT: Defaults to {'TINYMCE_JS_URL': 'https://cdnjs.
cloudflare.com/ajax/libs/tinymce/4.9.11/tinymce.min.js'}. A dictionary which is passed to
the template mentioned above. Please refer to the templates directly to see all available variables.

1.9.3 Settings for the tree editor

FEINCMS_TREE_EDITOR_INCLUDE_ANCESTORS: Defaults to False. When this setting is True, the tree editor
shows all objects on a single page, and also shows all ancestors up to the roots in filtered lists.

FEINCMS_TREE_EDITOR_OBJECT_PERMISSIONS: Defaults to False. Enables checking of object level per-
missions.

1.9.4 Settings for the page module

FEINCMS_USE_PAGE_ADMIN: Defaults to True. The page model admin module automatically registers the page
model with the default admin site if this is active. Set to False if you have to configure the page admin module
yourself.

FEINCMS_DEFAULT_PAGE_MODEL: Defaults to page.Page. The page model used by feincms.module.
page.

FEINCMS_ALLOW_EXTRA_PATH: Defaults to False. Activate this to allow random gunk after a valid page URL.
The standard behavior is to raise a 404 if extra path elements aren’t handled by a content type’s process() method.

FEINCMS_TRANSLATION_POLICY: Defaults to STANDARD. How to switch languages.

• 'STANDARD': The page a user navigates to sets the site’s language and overwrites whatever was set before.

• 'EXPLICIT': The language set has priority, may only be overridden by explicitely a language with ?
set_language=xx.

FEINCMS_FRONTEND_LANGUAGES: Defaults to None; set it to a list of allowed language codes in the front end so
to allow additional languages in the admin back end for preparing those pages while not yet making the available to
the public.

1.9. Settings 37

FeinCMS Documentation, Release 23.8.0

FEINCMS_CMS_404_PAGE: Defaults to None. Set this if you want the page handling mechanism to try and find a
CMS page with that path if it encounters a page not found situation.

FEINCMS_SINGLETON_TEMPLATE_CHANGE_ALLOWED: Defaults to False. Prevent changing template within
admin for pages which have been allocated a Template with singleton=True – template field will become read-
only for singleton pages.

FEINCMS_SINGLETON_TEMPLATE_DELETION_ALLOWED: Defaults to False. Prevent admin page deletion
for pages which have been allocated a Template with singleton=True.

FEINCMS_MEDIAFILE_TRANSLATIONS: Defaults to True. Set to False if you want FeinCMS to not translate
MediaFile names, and instead just use the filename directly.

1.9.5 Various settings

FEINCMS_THUMBNAIL_DIR: Defaults to _thumbs/. Defines a prefix for media file thumbnails. This allows you
to easily remove all thumbnails without fear of removing files belonging to image and file fields.

FEINCMS_THUMBNAIL_CACHE_TIMEOUT: feincms_thumbnail template filter library cache timeout. The
default is to not cache anything for backwards compatibility. If you use cloud storage AND feincms_thumbnail
it is recommended to set the timeout to a large value.

1.10 Database migration support for FeinCMS

FeinCMS itself does not come with any migrations. It is recommended that you add migrations for FeinCMS models
yourself inside your project.

1.10.1 Django’s builtin migrations

This guide assumes that you are using both the page and the medialibrary module from FeinCMS. Simply leave out
medialibrary if unused.

• Create a new folder named migrate in your app with an empty __init__.py inside.

• Add the following configuration to your settings.py:

MIGRATION_MODULES = {
'page': 'yourapp.migrate.page',
'medialibrary': 'yourapp.migrate.medialibrary',

}

Warning: You must not use migrations as folder name for the FeinCMS migrations, otherwise Django will
get confused.

• Create initial migrations and apply them:

./manage.py makemigrations medialibrary

./manage.py makemigrations page

./manage.py migrate

38 Chapter 1. Contents

FeinCMS Documentation, Release 23.8.0

1.11 Versioning database content with django-reversion

The following steps should be followed to integrate the page module with django-reversion:

• Add 'reversion' to the list of installed applications.

• Add 'reversion.middleware.RevisionMiddleware' to MIDDLEWARE_CLASSES.

• Call Page.register_with_reversion(**kwargs) after all content types have been created (af-
ter all create_content_type invocations). You can optionally supply kwargs that will be passed to
reversion.register().

• Add FEINCMS_USE_PAGE_ADMIN = False to your settings file.

Now, you need to create your own model admin subclass inheriting from both FeinCMS’ PageAdmin and from
reversions VersionAdmin:

from django.contrib import admin
from feincms.module.page.models import Page
from feincms.module.page.modeladmins import PageAdmin
from reversion.admin import VersionAdmin

class VersionedPageAdmin(PageAdmin, VersionAdmin):
pass

admin.site.register(Page, VersionedPageAdmin)

The VersionedPageAdmin does not look like the ItemEditor – it’s just raw Django inlines, without any additional
JavaScript. Patches are welcome, but the basic functionality needed for versioning page content is there.

Finally, you should ensure that initial revisions are created using django-reversion’s
createinitialrevisions management command.

Note: You should ensure that you’re using a reversion release which is compatible with your installed Django version.
The reversion documentation contains an up-to-date list of compatible releases.

The reversion support in FeinCMS requires at least django-reversion 1.6.

Note: Only the Page module is versioned. MediaFiles are not. If a user deletes an image from the MediaLibrary by
accident it cannot be recovered. Furthermore, if the position of a page has been moved within the tree, the recovery
will break the tree structure. You can try to fix it using the rebuild_mptt command.

1.12 Advanced topics

This section is targeted at more advanced users of FeinCMS. It goes into details which are not relevant for you if you
only want to use the page module or the media library on your site.

However, if you want to understand the inner workings of the CMS, the design considerations and how to optimize
your code, this section is for you.

1.12.1 feincms.models.Base — CMS base class

This is the base class which you must inherit if you’d like to use the CMS to manage content with the ItemEditor.

1.11. Versioning database content with django-reversion 39

https://github.com/etianen/django-reversion
https://django-reversion.readthedocs.io/en/stable/api.html#registration-api

FeinCMS Documentation, Release 23.8.0

Base.register_templates(*templates)

Base.register_regions(*regions)

Base.content
Beware not to name subclass field content as this will overshadow ContentProxy and you will not be able to
reference ContentProxy.

Base.create_content_type(model, regions=None[, **kwargs])
Base.content_type_for(model)

Base.copy_content_from(obj)

Base.replace_content_with(obj)

Base.append_content_from(obj)

1.12.2 feincms.utils — General utilities

feincms.utils.get_object(path[, fail_silently])
Helper function which can be used to import a python object. path should be the absolute dotted path to the
object. You can optionally pass fail_silently=True if the function should not raise an Exception in
case of a failure to import the object:

MyClass = get_object('module.MyClass')

myfunc = get_object('anothermodule.module2.my_function', fail_silently=True)

1.12.3 Software design considerations

These are assorted ramblings copy-pasted from various emails.

About rich text editors

We have been struggling with rich text editors for a long time. To be honest, I do not think it was a good idea to add
that many features to the rich text editor. Resizing images uploaded into a rich text editor is a real pain, and what
if you’d like to reuse these images or display them using a lightbox script or something similar? You have to resort
to writing loads of JavaScript code which will only work on one browser. You cannot really filter the HTML code
generated by the user to kick out ugly HTML code generated by copy-pasting from word. The user will upload 10mb
JPEGs and resize them to 50x50 pixels in the rich text editor.

All of this convinced me that offering the user a rich text editor with too much capabilities is a really bad idea. The rich
text editor in FeinCMS only has bold, italic, bullets, link and headlines activated (and the HTML code button, because
that’s sort of inevitable – sometimes the rich text editor messes up and you cannot fix it other than going directly into
the HTML code. Plus, if someone really knows what he’s doing, I’d still like to give them the power to shot their own
foot).

If this does not seem convincing you can always add your own rich text content type with a different configuration (or
just override the rich text editor initialization template in your own project). We do not want to force our world view
on you, it’s just that we think that in this case, more choice has the bigger potential to hurt than to help.

40 Chapter 1. Contents

FeinCMS Documentation, Release 23.8.0

Content blocks

Images and other media files are inserted via objects; the user can only select a file and a display mode (f.e. float/block
for images or something. . .). A page’s content could look like this:

• Rich Text

• Floated image

• Rich Text

• YouTube Video Link, embedding code is automatically generated from the link

• Rich Text

It’s of course easier for the user to start with only a single rich text field, but I think that the user already has too much
confusing possibilities with an enhanced rich text editor. Once the user grasps the concept of content blocks which
can be freely added, removed and reordered using drag/drop, I’d say it’s much easier to administer the content of a
webpage. Plus, the content blocks can have their own displaying and updating logic; implementing dynamic content
inside the CMS is not hard anymore, on the contrary. Since content blocks are Django models, you can do anything
you want inside them.

1.12.4 Performance considerations

While FeinCMS in its raw form is perfectly capable of serving out a medium sized site, more complicated setups
quickly lead to death by database load. As the complexity of your pages grows, so do the number of database queries
needed to build page content on each and every request.

It is therefore a good idea to keep an eye open for excessive database queries and to try to avoid them.

Denormalization

FeinCMS comes bundled with the “ct_tracker” extension that will reduce the number of database queries needed by
keeping some bookkeeping information duplicated in the base type.

Caching

Caching rendered page fragments is probably the most efficient way of reducing database accesses in your FeinCMS
site. An important consideration in the design of your site’s templates is which areas of your pages depend on which
variables. FeinCMS supplies a number of helper methods and variables, ready to be used in your templates.

Here’s an (incomplete) list of variables to use in {% cache %} blocks1:

• feincms_page.cache_key – DEPRECATED as of FeinCMS 1.11. A string describing the current page. De-
pending on the extensions loaded, this varies with the page, the page’s modification date, its language, etc.
This is always a safe bet to use on page specific fragments.

• LANGUAGE_CODE – even if two requests are asking for the same page, the html code rendered might
differ in translated elements in the navigation or elsewhere. If the fragment varies on language, include
LANGUAGE_CODE in the cache specifier.

• request.user.id – different users might be allowed to see different views of the site. Add request.user.id to
the cache specifier if this is the case.

1 Please see the django documentation for detailed description of the {% cache %} template tag.

1.12. Advanced topics 41

FeinCMS Documentation, Release 23.8.0

1.13 Frequently Asked Questions

This FAQ serves two purposes. Firstly, it does what a FAQ generally does – answer frequently asked questions.
Secondly, it is also a place to dump fragments of documentation which haven’t matured enough to be moved into their
own documentation file.

1.13.1 Should I extend the builtin modules and contents, or should I write my own?

The answer is, as often, the nearly useless “It depends”. The built-in modules serve two purposes: On one hand, they
should be ready to use and demonstrate the power of FeinCMS. On the other hand, they should be simple enough to
serve as examples for you if you want to build your own CMS-like system using the tools provided by FeinCMS.

If a proposed feature greatly enhances the modules’ or content types’ abilities without adding heaps of code, chances
are pretty good that it will be accepted into FeinCMS core. Anyway, the tools included should be so easy to use that
you might still want to build your own page CMS, if your needs are very different from those of the original authors.
If you don’t like monkey patching at all, or if the list of extensions you want to use grows too big, it might be time to
reconsider whether you really want to use the extension mechanism or if it might not be easier to start freshly, only
using the editor admin classes, feincms.models.Base and maybe parts of the included PageManager. . .

1.14 Contributing to the development of FeinCMS

1.14.1 Repository branches

The FeinCMS repository on github has several branches. Their purpose and rewinding policies are described below.

• maint: Maintenance branch for the second-newest version of FeinCMS.

• main: Stable version of FeinCMS.

main and maint are never rebased or rewound.

• next: Upcoming version of FeinCMS. This branch is rarely rebased if ever, but this might happen. A note will
be sent to the official mailing list whenever next has been rebased.

• pu or feature branches are used for short-lived projects. These branches aren’t guaranteed to stay around and
are not meant to be deployed into production environments.

1.15 FeinCMS Deprecation Timeline

This document outlines when various pieces of FeinCMS will be removed or altered in backward incompatible way.
Before a feature is removed, a warning will be issued for at least two releases.

1.15.1 1.6

• The value of FEINCMS_REVERSE_MONKEY_PATCH has been changed to False.

• Deprecated page manager methods have been removed (page_for_path_or_404,
for_request_or_404, best_match_for_request, from_request) - Page.
objects.for_request(), Page.objects.page_for_path and Page.objects.
best_match_for_path should cover all use cases.

42 Chapter 1. Contents

FeinCMS Documentation, Release 23.8.0

• Deprecated page methods have been removed (active_children,
active_children_in_navigation, get_siblings_and_self)

• Request and response processors have to be imported from feincms.module.page.processors.
Additionally, they must be registered individually by using register_request_processor and
register_response_processor.

• Prefilled attributes have been removed. Use Django’s prefetch_related or feincms.utils.
queryset_transform instead.

• feincms.views.base has been moved to feincms.views.legacy. Use feincms.views.cbv
instead.

• FEINCMS_FRONTEND_EDITING’s default has been changed to False.

• The code in feincms.module.page.models has been split up. The admin classes are in feincms.
module.page.modeladmin, the forms in feincms.module.page.forms now. Analogous changes
have been made to feincms.module.medialibrary.models.

1.15.2 1.7

• The monkeypatch to make Django’s django.core.urlresolvers.reverse() applicationcontent-
aware will be removed. Use feincms.content.application.models.app_reverse() and the
corresponding template tag instead.

• The module feincms.content.medialibrary.models will be replaced by the contents of
feincms.content.medialibrary.v2. The latter uses Django’s raw_id_fields support instead
of reimplementing it badly.

• The legacy views inside feincms.views.legacy will be removed.

1.15.3 1.8

• The module feincms.admin.editor will be removed. The model admin classes have been available in
feincms.admin.item_editor and feincms.admin.tree_editor since FeinCMS v1.0.

• Cleansing the HTML of a rich text content will still be possible, but the cleansing module feincms.utils.
html.cleanse will be removed. When creating a rich text content, the cleanse argument must be a
callable and cannot be True anymore. The cleansing function has been moved into its own package, feincms-
cleanse.

• Registering extensions using shorthand notation will be not be possible in FeinCMS v1.8 anymore. Use the
following method instead:

Page.register_extensions(
'feincms.module.page.extensions.navigation',
'feincms.module.extensions.ct_tracker',
)

• feincms_navigation and feincms_navigation_extended will be removed. Their functionality is
provided by feincms_nav instead.

• The function-based generic views aren’t available in Django after v1.4 anymore. feincms.views.generic
and feincms.views.decorators.add_page_to_extra_context() will be removed as well.

• The module feincms.content.medialibrary.v2, which is only an alias for feincms.content.
medialibrary.models starting with FeinCMS v1.7 will be removed.

• Page.setup_request() does not do anything anymore and will be removed.

1.15. FeinCMS Deprecation Timeline 43

http://pypi.python.org/pypi/feincms-cleanse
http://pypi.python.org/pypi/feincms-cleanse

FeinCMS Documentation, Release 23.8.0

1.15.4 1.9

• Fields added through page extensions which haven’t been explicitly added to the page model admin using
modeladmin.add_extension_options will disappear from the admin interface. The automatic collec-
tion of fields will be removed.

• All extensions should inherit from feincms.extensions.Extension. Support for register(cls,
admin_cls)-style functions will be removed in FeinCMS v1.9.

• The _feincms_extensions attribute on the page model and on models inheriting ExtensionsMixin
is gone.

1.15.5 1.10

No deprecations.

1.15.6 1.11

• RSSContent and update_rsscontent have been deprecated.

• The automatic discovery of subclasses of NavigationExtension has been replaced with an explicit mech-
anism of defining navigation extensions.

• Page.cache_key has never been used by FeinCMS itself and will therefore be removed in a future release.
Comparable functionality has been available for a long time with Page.path_to_cache_key.

1.15.7 1.12

• TODO update this

44 Chapter 1. Contents

CHAPTER 2

Change log

2.1 Next version

2.2 v23.8.0 (2023-08-07)

• Made the filter argument of content base’s get_queryset method optional. This enables easier interoper-
ability of FeinCMS content types with feincms3 plugins.

• Added Python 3.11.

• Fixed the Pillow resampling constant.

2.3 v23.1.0 (2023-03-09)

• Fixed a place where ACTION_CHECKBOX_NAME was imported from the wrong place.

• Dropped the is_dst argument to timezone.make_aware.

• Added Django 4.1 and 4.2 to the CI matrix.

2.4 v22.4.0 (2022-06-02)

• Changed the template_key field type to avoid boring migrations because of changing choices.

2.5 v22.3.0 (2022-05-17)

• The render() methods of bundled content types have been changed to return a tuple instead of a HTML
fragment in FeinCMS v22.0.0. This was backwards incompatible in some scenarios. Those methods have been
changed to return a tuple subclass which automatically renders a HTML fragment if evaluated in a string context.

45

FeinCMS Documentation, Release 23.8.0

2.6 v22.2.0 (2022-05-06)

• Dropped support for Python < 3.8.

• Fixed the thumbnailing support of the MediaFileForeignKey. It has been broken since Django switched
to template-based widget rendering.

2.7 v22.1.0 (2022-03-31)

• Fixed the feincms_render_level render recursion protection.

• Wrapped the recursive saving of pages in a transaction, so if anything fails we have a consistent state.

• Dropped more compatibility code for Django 1.x.

• Made medialibrary_orphans work again.

• Removed the six dependency since we’re Python 3-only now.

• Updated the pre-commit hooks, cleaned up the JavaScript a bit.

2.8 v22.0.0 (2022-01-07)

• Possibly backwards incompatible Changed all bundled content types’ render() methods to return the
(template_name, context) tuple instead of rendering content themselves.

• Dropped compatibility guarantees with Python < 3.6, Django < 3.2.

• Added pre-commit.

• The default view was changed to accept the path as a path keyword argument, not only as a positional argument.

• Changed the item editor action buttons CSS to not use transitions so that the sprite buttons look as they should.

2.9 v1.20.0 (2021-03-22)

• Changed #main to the more specific #feincmsmain so that it doesn’t collide with Django’s admin panel
markup.

• Stopped the JavaScript code from constructing invalid POST action URLs in the change form.

• Renamed the main branch to main.

• Switched to a declarative setup.

• Switched to GitHub actions.

• Sorted imports.

• Reformated the JavaScript code using prettier.

• Added Python up to 3.9, Django up to the main branch (the upcoming 4.0) to the CI list.

46 Chapter 2. Change log

FeinCMS Documentation, Release 23.8.0

2.10 v1.19.0 (2021-03-04)

• Fixed a bug where the thumbnailer would try to save JPEGs as RGBA.

• Reformatted the code using black, again.

• Added Python 3.8, Django 3.1 to the build.

• Added the Django 3.2 .headers property to the internal dummy response used in the etag request processor.

• Added a workaround for AppConfig-autodiscovery related crashes. (Because feincms.apps now has
more meanings). Changed the documentation to prefer feincms.content.application.models.*
to feincms.apps.*.

• Updated the TinyMCE CDN URL to an version which doesn’t show JavaScript alerts.

• Added missing on_delete values to the django-filer content types.

2.11 v1.18.0 (2020-01-21)

• Added a style checking job to the CI matrix.

• Dropped compatibility with Django 1.7.

2.12 v1.17.0 (2019-11-21)

• Added compatibility with Django 3.0.

2.13 v1.16.0 (2019-02-01)

• Reformatted everything using black.

• Added a fallback import for the staticfiles template tag library which will be gone in Django 3.0.

2.14 v1.15.0 (2018-12-21)

• Actually made use of the timeout specified as FEINCMS_THUMBNAIL_CACHE_TIMEOUT instead of the hard-
coded value of seven days.

• Reverted the deprecation of navigation extension autodiscovery.

• Fixed the item editor JavaScript and HTML to work with Django 2.1’s updated inlines.

• Fixed TranslatedObjectManager.only_language to evaluate callables before filtering.

• Changed the render protocol of content types to allow returning a tuple of (ct_template,
ct_context) which works the same way as feincms3’s template renderers.

2.10. v1.19.0 (2021-03-04) 47

https://feincms3.readthedocs.io/en/latest/guides/rendering.html

FeinCMS Documentation, Release 23.8.0

2.15 v1.14.0 (2018-08-16)

• Added a central changelog instead of creating release notes per release because development is moving more
slowly owing to the stable nature of FeinCMS.

• Fixed history (revision) form, recover form and breadcrumbs when FeinCMS is used with Reversion 2.0.x. This
accommodates refactoring that took place in Reversion 1.9 and 2.0. If you are upgrading Reversion (rather
than starting a new project), please be aware of the significant interface changes and database migrations in that
product, and attempt upgrading in a development environment before upgrading a live site.

• Added install_requires back to setup.py so that dependencies are installed automatically again. Note
that some combinations of e.g. Django and django-mptt are incompatible – look at the Travis CI build configu-
ration to find out about supported combinations.

• Fixed a few minor compatibility and performance problems.

• Added a new FEINCMS_THUMBNAIL_CACHE_TIMEOUT setting which allows caching whether a thumb ex-
ists instead of calling storage.exists() over and over (which might be slow with remote storages).

• Fixed random reordering of applications by using an ordered dictionary for apps.

• Increased the length of the caption field for media file translations.

• Fixed feincms.contrib.tagging to actually work with Django versions after 1.9.x.

48 Chapter 2. Change log

https://django-reversion.readthedocs.io/en/stable/changelog.html
https://github.com/feincms/feincms/blob/master/.travis.yml
https://github.com/feincms/feincms/blob/master/.travis.yml

CHAPTER 3

Old release notes

3.1 FeinCMS 1.13 release notes

Welcome to FeinCMS 1.13!

3.1.1 Compatibility with Django 1.10

The biggest feature of FeinCMS 1.13 is being compatible with Django 1.10 and Django 1.11.

3.1.2 Backwards-incompatible changes

• None.

Removal of deprecated features

• None.

3.1.3 New deprecations

• None.

3.1.4 Notable features and improvements

• Some support has been added for django-filer.

49

FeinCMS Documentation, Release 23.8.0

3.1.5 Bugfixes

• Too many to list.

3.1.6 Compatibility with Django and other apps

FeinCMS 1.13 requires Django 1.7 or better.

3.2 FeinCMS 1.12 release notes

Welcome to FeinCMS 1.12!

Warning: This is a cleanup release. Lots of changes ahead! Please report problems in our issue tracker on Github!

3.2.1 Template content requires explicit list of templates

The template refactor in Django removed the ability to enumerate templates in template folders. Because of that
templates must now be explicitly specified when creating the content type:

Page.create_content_type(TemplateContent, TEMPLATES=[
('content/template/something1.html', 'something'),
('content/template/something2.html', 'something else'),
('base.html', 'makes no sense'),

])

Also, you need to add a model migration which renames the old filename field to the new template field and
prepends content/template/ to all filenames:

-*- coding: utf-8 -*-
from __future__ import unicode_literals

from django.db import models, migrations

class Migration(migrations.Migration):

dependencies = [
('page', 'WHATEVER IS APPROPRIATE'),

]

operations = [
migrations.RenameField('TemplateContent', 'filename', 'template'),
migrations.RunSQL(

"UPDATE page_page_templatecontent"
" SET template='content/template/' || template;",
"UPDATE page_page_templatecontent"
" SET template=REPLACE(template, 'content/template/', '');"

),
]

50 Chapter 3. Old release notes

https://github.com/feincms/feincms/issues

FeinCMS Documentation, Release 23.8.0

3.2.2 The blog module has been completely removed

If you need a blog, have a look at Elephantblog instead.

3.2.3 Caching of pages in various page manager methods has been removed

Some methods such as Page.objects.for_request automatically cached the page instances. This behavior lead to non-
obvious problems and has therefore been removed.

3.2.4 Backwards-incompatible changes

• FeinCMS requires Django 1.7 or better.

• Django has removed comments support a long time ago, which meant that our bundled comments content in
feincms.content.comments was broken for some time. It has been completely removed.

• feincms.content.rss has been removed, use feincms-syndication instead.

Removal of deprecated features

South is not supported anymore? Django 1.7 and better only?

feincms.views.cbv has been removed. Use feincms.urls and feincms.views directly instead.

3.2.5 New deprecations

• None.

3.2.6 Notable features and improvements

• Rich text cleaning using Tidy has been removed.

• FEINCMS_JQUERY_NO_CONFLICT is gone. Either use django.jQuery or feincms.jQuery explic-
itly.

• Some support has been added for django-filer.

3.2.7 Bugfixes

• Too many to list.

3.2.8 Compatibility with Django and other apps

FeinCMS 1.12 requires Django 1.7 or better.

3.3 FeinCMS 1.11 release notes

Welcome to FeinCMS 1.11!

3.3. FeinCMS 1.11 release notes 51

https://github.com/feincms/feincms-elephantblog

FeinCMS Documentation, Release 23.8.0

3.3.1 Template inheritance with application contents

FeinCMS adds a decorator and a TemplateResponse subclass which can be returned from apps embedded through
ApplicationContent. The template response’s template will override the template used by FeinCMS’ main view
and the context will be merged. A selection of HTTP response headers (currently Cache-Control, Last-Modified and
Expires) will also be copied to the main response. The following two examples are fully equivalent:

from django.template.response import TemplateResponse
from feincms.content.application.models import UnpackTemplateResponse
from feincms.views.decorators import unpack

@unpack
def app_detail(request, ...):

return TemplateResponse(request, 'template.html', {...})

or

def app_detail(request, ...):
return UnpackTemplateResponse(request, 'template.html', {...})

The response class can also be easily used with Django’s class-based views:

class MyListView(generic.ListView):
response_class = UnpackTemplateResponse

This mechanism supersedes returning a tuple of (template_name, context). This is still supported, but lacks
the possibility to override HTTP response headers.

3.3.2 Explicit definition of navigation extensions is now possible

The auto-discovery of navigation extensions always was fragile and had to happen before the navigation extension
itself was registered with the page class. This has been fixed; it’s now possible to explicitly define the list of navigation
extensions which should be available:

from feincms.module.page.extensions import navigation
from feincms.module.page.models import Page
from myapp.navigation_extensions import MyappNavigationExtension

class NavigationExtension(navigation.Extension):
navigation_extensions = [

MyappNavigationExtension,
]

Page.register_extensions(
NavigationExtension,

)

The previous method has been deprecated and will stop working in future versions of FeinCMS.

3.3.3 Backwards-incompatible changes

• FeinCMS requires a minimum of Django 1.6.

• The example project has been removed, because it did not really demonstrate a best practices FeinCMS setup. A
standard installation of FeinCMS will often include additional libraries such as feincms-oembed, form-designer
and additional modules.

52 Chapter 3. Old release notes

https://github.com/feincms/feincms-oembed
https://github.com/feincms/form_designer

FeinCMS Documentation, Release 23.8.0

Removal of deprecated features

There were no deprecated features to be removed.

3.3.4 New deprecations

• RSSContent and update_rsscontent have been deprecated, those being the only reason why FeinCMS
depends on feedparser. This will allow us to remove this dependency. Users should switch to feincms-
syndication instead.

• The automatic discovery of subclasses of NavigationExtension has been replaced with an explicit mech-
anism of defining navigation extensions.

• Page.cache_key has never been used by FeinCMS itself and will therefore be removed in a future release.
Comparable functionality has been available for a long time with Page.path_to_cache_key.

3.3.5 Notable features and improvements

• Fix the inconsistent filtering of pages inside feincms_nav. Navigation extensions always came last, but the
last release of FeinCMS added navigation group filtering afterwards. This has been fixed. The workaround for
the previous behavior was to add the matching navigation group to page pretenders as well.

• Support for importing PIL as import Image has been removed.

• The builtin and mostly broken frontend editing support has been removed. This is not a decision against frontend
editing / on site editing in general, it is more about creating a space for new ideas and new implementations.

• The home-grown schema checking support has been removed. Real migrations should be used instead.

• We are logging more stuff.

• The admin CSS has been updated in preparation for Django’s (hopefully!) upcoming django-flat-theme merge.

3.3.6 Bugfixes

• {% feincms_nav %} now filters by navigation group before applying navigation extensions for internal
consistency.

• {% page_is_active %} correctly handles page pretenders now.

3.3.7 Compatibility with Django and other apps

FeinCMS 1.11 requires Django 1.6 or better.

3.4 FeinCMS 1.10 release notes

Welcome to FeinCMS 1.10!

3.4. FeinCMS 1.10 release notes 53

https://github.com/feincms/feincms-syndication
https://github.com/feincms/feincms-syndication
https://pypi.python.org/pypi/django-flat-theme

FeinCMS Documentation, Release 23.8.0

3.4.1 Full compatibility with the app-loading refactor in Django 1.7

FeinCMS 1.10 is compatible with Django 1.7. It shouldn’t even be necessary to change your FeinCMS-using code.

The only change is that we cannot test for name clashes in content types anymore. This only concerns you if you were
using more than one feincms.models.Base subclass inside the same app using the same content types. You
should be using the class_name argument to create_content_type already anyway. The technical reason
for this change is that the name clash test requires the app registry to be ready (which it isn’t yet when creating content
types).

Note: If for some reason FeinCMS 1.10 does not work with Django 1.7 for you, please provide a description of the
problems you’re seeing in the issue tracker.

3.4.2 TinyMCE 4.1 as default rich text configuration

FeinCMS now uses TinyMCE 4.1 as the default rich text editor instead of the outdated 3.x line of releases. The
previous version is still officially supported as is CKEditor. Also, the TinyMCE configuration has been changed to
hide the menubar by default.

3.4.3 Home-grown schema checking support has been deactivated

Not many words needed. Use South or Django 1.7’s own migrations support instead.

This functionality has been deactivated without a deprecation period because compared to real database migration
solutions it looks more like a bug than a feature. Also, it interfered with initial migrations – the page table’s schema was
introspected because of other post_syncdb signals before the table itself even existed under certain circumstances,
which meant that migrations failed with the only way out being syncdb --all.

To continue using this functionality, set FEINCMS_CHECK_DATABASE_SCHEMA to True. The functionality will
be completely removed in the next release.

3.4.4 A better mechanism for assigning pages to different menu bars

The new extension feincms.module.page.extensions.navigationgroups allows assigning pages to
different regions, and asking feincms_nav to only return pages belonging to one of those.

The default configuration of the extension defines two regions, default and footer. This can be easily changed
by subclassing the extension class and overriding the groups attribute and registering this extension class instead of
the original.

An example for getting a list of pages for the footer region follows:

{% load feincms_page_tags %}
{% feincms_nav feincms_page level=2 group='footer' as footer_nav %}

3.4.5 Backwards-incompatible changes

Shouldn’t have any.

54 Chapter 3. Old release notes

https://github.com/feincms/feincms/issues

FeinCMS Documentation, Release 23.8.0

Removal of deprecated features

None.

3.4.6 New deprecations

None.

3.4.7 Notable features and improvements

• The bundled versions of jQuery and jQuery UI have been updated to 1.11.1 and 1.10.3 respectively.

• feincms_languagelinks does not return page URLs leading to inactive pages anymore.

• The application content type form does not mysteriously forget values anymore.

• Page.get_original_translation returns the current page instead of crashing if there is no original
translation.

• feincms_nav returns an empty list instead of crashing if the page argument is None.

• Settings are documented again.

3.4.8 Bugfixes

• Bulk deletion of pages in the tree editor shouldn’t lead to MPTT data corruption anymore. This didn’t happen
often before either, but shouldn’t happen anymore at all.

3.4.9 Compatibility with Django and other apps

FeinCMS 1.10 requires Django 1.4 or better. The testsuite is successfully run against Django 1.4, 1.5, 1.6 and the
upcoming 1.7.

3.5 FeinCMS 1.9 release notes

Welcome to FeinCMS 1.9!

3.5.1 Extensions in the item editor

Extension fieldsets are now presented using a tabbed interface in the item editor as well to raise their visibility.

3.5.2 A better way to mark pages as active in the navigation

The new template tag {% page_is_active %} knows how to handle regular pages and also page pretenders from
navigation extensions.

The following template snippet shows the recommended method of marking pages as active:

3.5. FeinCMS 1.9 release notes 55

FeinCMS Documentation, Release 23.8.0

{% feincms_nav feincms_page level=1 as toplevel %}

{% for page in toplevel %}

{% page_is_active page as is_active %}
<li {% if is_active %}class="active"{% endif %}>

{{ page.title }}

{% endfor %}

3.5.3 Backwards-incompatible changes

Removal of deprecated features

• The table content type has been removed. It has open bugs for more than two years which weren’t fixed, and
now that we’ve moved on to newer versions of jQuery, the table content didn’t even load.

• All extensions should inherit from feincms.extensions.Extension. The support for
register(cls, admin_cls)-style functions has been removed.

• Unknown page model fields (for example those added through page extensions) aren’t added to the adminis-
tration interface anymore. Use modeladmin.add_extension_options if you want extension fields to
appear.

• The _feincms_extensions property on the page model (and on all models inheriting
ExtensionsMixin has been removed. It has been deprecated since FeinCMS v1.7.

3.5.4 New deprecations

3.5.5 Notable features and improvements

• The bundled versions of jQuery and jQuery UI have been updated to 1.9.1 and 1.10.3 respectively. Custom
confirmation boxes have been removed and standard ones are used instead now.

• The diff between 1.8 and 1.9 is large – most of it because of coding style cleanups. flake8 runs should not show
any warnings.

• Extension classes can be passed directly to register_extensions() now.

3.5.6 Bugfixes

3.5.7 Compatibility with Django and other apps

FeinCMS 1.9 requires Django 1.4 or better. The testsuite is successfully run against Django 1.4, 1.5 and 1.6. Django
1.7 is not supported.

3.6 FeinCMS 1.8 release notes

Welcome to FeinCMS 1.8!

56 Chapter 3. Old release notes

https://pypi.python.org/pypi/flake8

FeinCMS Documentation, Release 23.8.0

3.6.1 FeinCMS finally got continuous integration

Have a look at the status page here:

Travis CI

3.6.2 Preliminary Python 3.3 support

The testsuite runs through on Python 3.3.

3.6.3 Singleton templates

Templates can be defined to be singletons, which means that those templates can only occur once on a whole site. The
page module additionally allows specifying that singleton templates must not have any children, and also that the page
cannot be deleted.

3.6.4 Dependencies are automatically installed

Now that distribute and setuptools have merged, setup.py has been converted to use setuptools again which means
that all dependencies of FeinCMS should be installed automatically.

3.6.5 Backwards-incompatible changes

• The template naming and order used in the section content has been changed to be more similar to the media
library. The naming is now <mediafile type>_<section content type>, additionally the media
file type is considered more important for template resolution than the section content type.

• The mechanism for finding the best application content match has been massively simplified and also made
customizable. The default implementation of ApplicationContent.closest_match now only takes
the current language into account.

Removal of deprecated features

• The module feincms.admin.editor has been removed. Import the classes from feincms.admin.
item_editor or feincms.admin.tree_editor directly.

• The HTML cleansing module feincms.utils.html.cleanse has been removed. Use the standalone
package feincms-cleanse instead.

• Registering extensions using shorthand notation is not possible anymore. Always use the full python path to the
extension module.

• The two navigation template tags feincms_navigation and feincms_navigation_extended have
been removed. The improved feincms_nav tag has been introduced with FeinCMS v1.6.

• The function-based generic views in feincms.views.generic have been removed. The decorator function
feincms.views.decorators.add_page_to_extra_context() is therefore obsolete and has also
been removed.

• The old media library content type module feincms.content.medialibrary.models has been re-
placed with the contents of feincms.content.medialibrary.v2. The model field position has
been renamed to type, instead of POSITION_CHOICES you should use TYPE_CHOICES now. The code
has been simplified and hacks to imitate raw_id_fields have been replaced by working stock code. The v2

3.6. FeinCMS 1.8 release notes 57

https://travis-ci.org/feincms/feincms
http://pypi.python.org/pypi/feincms-cleanse

FeinCMS Documentation, Release 23.8.0

module will stay around for another release and will be removed in FeinCMS v1.8. The now-unused template
admin/content/mediafile/init.html has been deleted.

• Page.setup_request() has been removed because it has not been doing anything for some time now.

3.6.6 New deprecations

• Page extensions should start explicitly adding their fields to the administration interface using modeladmin.
add_extension_options. FeinCMS v1.8 will warn about fields collected automatically, the next release
will not add unknown fields to the administration interface anymore.

• All extensions should inherit from feincms.extensions.Extension. Support for register(cls,
admin_cls)-style functions will be removed in FeinCMS v1.9.

3.6.7 Notable features and improvements

• The template tags feincms_render_region and feincms_render_content do not require a request
object anymore. If you omit the request parameter, the request will not be passed to the render()methods.

• The code is mostly flake8 clean.

• The new management command medialibrary_orphans can be used to find files which aren’t referenced
in the media library anymore.

• The test suite has been moved into its own top-level module.

3.6.8 Bugfixes

• The item and tree editor finally take Django permissions into account.

• The datepublisher response processor should not crash during daylight savings time changes anymore.

• The undocumented attribute PageAdmin.unknown_fields has been removed because it was modified at
class level and not instance level which made reuse harder than necessary.

3.6.9 Compatibility with Django and other apps

FeinCMS 1.8 requires Django 1.4 or better. The testsuite is successfully run against Django 1.4, 1.5 and 1.6. Django
1.7 is not supported.

3.7 FeinCMS 1.7 release notes

Welcome to FeinCMS 1.7!

3.7.1 Extensions-mechanism refactor

The extensions mechanism has been refactored to remove the need to make models know about their related model
admin classes. The new module feincms.extensions contains mixins and base classes - their purpose is as
follows: Extensions.

58 Chapter 3. Old release notes

https://pypi.python.org/pypi/flake8

FeinCMS Documentation, Release 23.8.0

3.7.2 View code refactor

Made views, content type and request / response processors reusable.

The legacy views at feincms.views.legacy were considered unhelpful and were removed.

3.7.3 Backwards-incompatible changes

Page manager methods behavior

Previously, the following page manager methods sometimes returned inactive objects or did not raise the appropriate
(and asked for) Http404 exception:

• Page.objects.page_for_path

• Page.objects.best_match_for_path

• Page.objects.for_request

The reason for that was that only the page itself was tested for activity in the manager method, and none of its ancestors.
The check whether all ancestors are active was only conducted later in a request processor. This request processor was
registered by default and was always run when Page.objects.for_request was called with setup=True.

However, request processors do not belong into the model layer. The necessity of running code belong-
ing to a request-response cycle to get the correct answer from a manager method was undesirable. This
has been rectified, those manager methods check the ancestry directly. The now redundant request processor
require_path_active_request_processor has been removed.

Reversing application content URLs

The support for monkey-patching applicationcontent-awareness into Django’s django.core.urlresolvers.
reverse() has been removed.

Removal of deprecated features

• The old media library content type module feincms.content.medialibrary.models has been re-
placed with the contents of feincms.content.medialibrary.v2. The model field position has
been renamed to type, instead of POSITION_CHOICES you should use TYPE_CHOICES now. The code
has been simplified and hacks to imitate raw_id_fields have been replaced by working stock code. The v2
module will stay around for another release and will be removed in FeinCMS v1.8. The now-unused template
admin/content/mediafile/init.html has been deleted.

New deprecations

• Page.setup_request() does not do anything anymore and will be removed in FeinCMS v1.8.

3.7.4 Notable features and improvements

• A lazy version of app_reverse() is now available, app_reverse_lazy().

• Because of the extensions refactor mentioned above, all register_extensionmethods have been removed.
Additionally, the model admin classes are not imported inside the models.py files anymore.

3.7. FeinCMS 1.7 release notes 59

FeinCMS Documentation, Release 23.8.0

• The setting FEINCMS_USE_PAGE_ADMIN can be set to false to prevent registration of the page model with
the administration. This is especially useful if you only want to reuse parts of the page module.

• Various classes in feincms.module.page do not hardcode the page class anymore; hooks are provided to
use your own models instead. Please refer to the source for additional information.

• Page.redirect_to can also contain the primary key of a page now, which means that the redirect target
stays correct even if the page URL changes.

• Before, page content was copied automatically when creating a translation of an existing page. This behavior
can be deactivated by unchecking a checkbox now.

• Work has begun to make the page forms, model admin classes and managers work with an abstract page model
so that it will be easier to work with several page models in a single Django site.

3.7.5 Bugfixes

• It should be possible to store FeinCMS models in a secondary database, as long as the base model and all content
types are stored in the same database.

• Changing templates in the item editor where the templates do not share common regions does not result in
orphaned content blocks anymore.

• feincms.utils.get_object() knows how to import modules, not only objects inside modules now.

• The order and priority values for pages have been fixed when generating sitemaps.

• Various save and delete methods now come with alters_data=True to prevent their use in templates.

• Only one translation is permitted per language when using feincms.translations.

• FeinCMS can now be used without django.contrib.sites.

• If the fieldset of a content inline has been customized, the fieldset is not processed again to make sure that all
form fields are actually shown. If you use dynamically generated fields in a content inline such as the application
content does, you must not customize the fieldsets attribute of the FeinCMSInline.

3.7.6 Compatibility with Django and other apps

FeinCMS 1.7 requires Django 1.4 or better.

3.8 FeinCMS 1.6 release notes

Welcome to FeinCMS 1.6!

3.8.1 Backwards-incompatible changes

Reversing application content URLs

The default value of FEINCMS_REVERSE_MONKEY_PATCH has been changed to False. Support for monkey-
patching the reverse() method to support the old 'urlconf/viewname' notation will be removed in the 1.7
release.

60 Chapter 3. Old release notes

FeinCMS Documentation, Release 23.8.0

Improvements to the bundled file and image contents

• ImageContent, FileContent and VideoContent now have pretty icons out-of-the-box.

• ImageContent now accepts optional FORMAT_CHOICES for use with FeinCMS’ bundled thumbnailers, as
well as caption and alt_text fields.

Note: If you are upgrading from an earlier version of FeinCMS, you’ll have to add the new database columns
yourself or use a migration tool like South to do it for you. Instructions for MySQL and the page module follow:

ALTER TABLE page_page_imagecontent ADD COLUMN `alt_text` varchar(255) NOT NULL;
ALTER TABLE page_page_imagecontent ADD COLUMN `caption` varchar(255) NOT NULL;

If you want to use FORMAT_CHOICES:

ALTER TABLE page_page_imagecontent ADD COLUMN `format` varchar(64) NOT NULL;

• FileContent now displays the size of the file in the default template, and uses span elements to allow
styling of the title / size.

Removal of deprecated features

• Deprecated page manager methods have been removed. You should use Page.objects.for_request
instead of the following manager methods:

– Page.objects.page_for_path_or_404()

– Page.objects.for_request_or_404()

– Page.objects.best_match_for_request()

– Page.objects.from_request()

• Deprecated page methods have been removed:

– Page.active_children(): Use Page.children.active() instead.

– Page.active_children_in_navigation(): Use Page.children.in_navigation()
instead.

– Page.get_siblings_and_self(): You probably wanted self.parent.children.
active() or self.get_siblings(include_self=True).active() anyway.

• The shortcuts Page.register_request_processors() and Page.
register_response_processors() to register several request or response processors at once
have been removed in favor of their counterparts which only allow one processor at a time, but allow
for replacing FeinCMS’ included processors, require_path_active_request_processor and
redirect_request_processor.

• It is not possible anymore to access the request and response processors as methods of the Page class. The
processors are all in feincms.module.page.processors now.

• The deprecated support for prefilled attributes has been removed. Use Django’s own prefetch_related or
feincms.utils.queryset_transform instead.

• The deprecated feincms.views.base module has been removed. The code has been moved to feincms.
views.legacy during the FeinCMS v1.5 cycle.

3.8. FeinCMS 1.6 release notes 61

FeinCMS Documentation, Release 23.8.0

New deprecations

• The view decorator feincms.views.decorators.add_page_to_extra_context has been dep-
recated as it was mostly used with function-based generic views, which have been deprecated in
Django as well. Use Django’s class-based generic views and the feincms.context_processors.
add_page_if_missing context processor if you need similar functionality instead.

• The content type feincms.content.medialibrary.models.MediaFileContent has been depre-
cated since FeinCMS v1.4. The whole module has been deprecated now and will be replaced with the contents
of feincms.content.medialibrary.v2 in FeinCMS v1.7. The v2module will stay around for another
release or two so that code using v2 will continue working with FeinCMS v1.8 (at least).

• The template tag feincms_navigation has been superseded by feincms_nav which fixes a few prob-
lems with the old code and is generally much more maintainable. The old version will stay around for one
more version and will be removed for FeinCMS v1.8. The only difference (apart from the bugfixes and the
slightly different syntax) is that feincms_nav unconditionally uses navigation extensions. Additionally,
feincms_navigation uses feincms_nav’s implementation behind the scenes, which means that the
extended argument does not have an effect anymore (it’s always active).

• The HTML cleaning support in feincms.utils.html.cleanse which could be easily used in the
RichTextContent by passing cleanse=True has been copied into its own Python package, feincms-
cleanse. You should start passing a callable to cleanse right now. The existing support for cleansing will only
be available up to FeinCMS v1.7.

• FeinCMS v1.8 will not support shorthands anymore when registering extensions. Always provide the full python
path to the extension file (or pass callables) to feincms.models.Base.register_extensions. That
is, Page.register_extensions('feincms.module.extensions.ct_tracker') should be
used instead of Page.register_extensions('ct_tracker'). While it is a bit more work it will
make it much more explicit what’s going on.

Compatibility with Django and other apps

FeinCMS 1.6 requires Django 1.4. If you want to use django-reversion with FeinCMS you have to use django-reversion
1.6 or newer.

3.8.2 Notable features and improvements

• The bundled content types take additional steps to ensure that the main view context is available
in content types’ templates. If you only use the rendering tags (feincms_render_region and
feincms_render_content) you can take advantage of all variables from your context processors in con-
tent types’ templates too. Furthermore, those templatetags have been simplified by using Django’s template.
Library.simple_tag method now, which means that filters etc. are supported as template tag arguments
now.

• MediaFile does no longer auto-rotate images on upload. It really is not a media library’s job to magically
modify user content; if needed, it should be done in an image filter (like sorl). Also, reading through the image
data seems to have a side effect on some external storage engines which then would only save half the image
data, see issue #254. Additionally, FeinCMS does not try anymore to detect whether uploaded files really are
images, and only looks at the file extension by default. We did not peek at the contents of other file types either.

• A new model field has been added, feincms.contrib.richtext.RichTextField. This is a drop-in
replacement for Django’s models.TextField with the difference that it adds the CSS classes required by
rich text fields in the item editor.

• The value of FEINCMS_FRONTEND_EDITING defaults to False now.

62 Chapter 3. Old release notes

http://pypi.python.org/pypi/feincms-cleanse
http://pypi.python.org/pypi/feincms-cleanse

FeinCMS Documentation, Release 23.8.0

• Frontend editing can now safely be used with caching. This is accomplished by saving state in a cookie instead
of creating sessions all the time.

• The SectionContent content type has been updated and does properly use raw_id_fields for the media
files instead of the hack which was used before.

• It is now possible to specify a different function for generating thumbnails in the media library administra-
tion. Set the setting FEINCMS_MEDIALIBRARY_THUMBNAIL to a function taking a media file instance and
returning a URL to a thumbnail image or nothing if the file type cannot be handled by the thumbnailer.

• Thumbnails generated by the bundled |thumbnail and |cropscale template filters are stored separately
from the uploaded files now. This change means that all thumbnails will be automatically regenerated after a
FeinCMS update. If you need the old behavior for some reason, set the setting FEINCMS_THUMBNAIL_DIR
to an empty string. The default setting is '_thumbs/'.

• All templates and examples have been converted to the new {% url %} syntax.

• Custom comment models are now supported in the CommentsContent.

• Media files are now removed from the disk too if a media file entry is removed from the database.

• The modules feincms.module.page.models and feincms.module.medialibrary.models
have been split up. Admin code has been moved into modeladmin.py files, form code into forms.py.

3.8.3 Bugfixes

• The core page methods support running with APPEND_SLASH = False now. Many content types using
forms do not, however.

• The MPTT attributes aren’t hardcoded in the tree editor anymore. Custom names for the left, right, level
and tree_id attributes are now supported. Models which do not use id as their primary key are supported
now as well.

• FeinCMS uses timezone-aware datetimes now.

3.9 FeinCMS 1.5 release notes

3.9.1 Explicit reversing of URLs from ApplicationContent-embedded apps

URLs from third party apps embedded via ApplicationContent have been traditionally made reversable by an
ugly monkey patch of django.core.urlresolvers.reverse. This mechanism has been deprecated and will
be removed in future FeinCMS versions. To reverse an URL of a blog entry, instead of this:

deprecated
from django.core.urlresolvers import reverse
reverse('blog.urls/blog_detail', kwargs={'year': 2011, 'slug': 'some-slug'})

do this:

from feincms.content.application.models import app_reverse
app_reverse('blog_detail', 'blog.urls', kwargs={'year': 2011, 'slug': 'some-slug'})

If you do not want to use the monkey patching behavior anymore, set FEINCMS_REVERSE_MONKEY_PATCH =
False in your settings file.

The new method is accessible inside a template too:

3.9. FeinCMS 1.5 release notes 63

FeinCMS Documentation, Release 23.8.0

{% load applicationcontent_tags %}

{# You have to quote the view name and the URLconf as in Django's future {% url %}
→˓tag. #}
{% app_reverse "blog_detail" "blog.urls" year=2011 slug='some-slug' %}

3.9.2 Inheritance 2.0

It’s possible to use Django’s template inheritance from third party applications embedded through
ApplicationContent too. To use this facility, all you have to do is return a tuple consisting of the tem-
plate and the context. Instead of:

def my_view(request):
...
return render_to_response('template.html', {'object': ...})

simply use:

def my_view(request):
...
return 'template.html', {'object': ...}

Note: template.html should extend a base template now.

3.9.3 Better support of InlineModelAdmin options for content types

The FeinCMSInline only differs from a stock StackedInline in differing defaults of form, extra and fk_name.
All inline options should be supported now, especially raw_id_fields and fieldsets.

3.9.4 Minor changes

• The main CMS view is now based on Django’s class-based generic views. Inheritance 2.0 will not work with
the old views. You don’t have to do anything if you use feincms.urls (as is recommended).

• Request and response processors have been moved out of the Page class into their own module, feincms.
module.page.processors. They are still accessible for some time at the old place.

• django.contrib.staticfiles is now a mandatory dependency for the administration interface.

• The active and in_navigation booleans on the Page class now default to True.

• The minimum version requirements have changed. Django versions older than 1.3 aren’t supported anymore,
django-mptt must be 0.4 upwards.

• The mptt tree rebuilders have been removed; django-mptt offers tree rebuilding functionality itself.

• django-queryset-transform has been imported under feincms.utils and is used for speed-
ing up various aspects of the media library. The prefilled attributes have been deprecated, because
django-queryset-transform can be used to do everything they did, and better.

• PageManager.active_filters has been converted from a list to a SortedDict. This means that
replacing or removing individual filters has become much easier than before. If you only used the public methods
for registering new filters you don’t have to change anything.

64 Chapter 3. Old release notes

FeinCMS Documentation, Release 23.8.0

• The same has been done with the request and response processors.

• The TemplateContent has been changed to use the filesystem and the app_directories template
loaders directly. It can be used together with the cached template loader now.

• The tree editor has received a few usability fixes with (hopefully) more to come.

• Page.setup_request can be called repeatedly without harm now. The return value of the first call is
cached and returned on subsequent calls which means that request processors are run at most once.

• Extensions such as translations and datepublisher which were only usable with the page module
have been made more generic and are available for other FeinCMS-derived models too.

• Media files from the medialibrary can be exported and imported in bulk.

• When creating a new translation of a page, content is only copied from the original translation when the new
page does not have any content yet. Furthermore the user is notified that some content-copying has happened.

• A few bugs have been fixed.

3.10 FeinCMS 1.4 release notes

• FeinCMS supports more than one site from the same database with django.contrib.sites now. Thanks
to Bojan Mihelac and Stephen Tyler for the work and insistence on this issue.

• It is possible to customize the administration model inline used for content types. This means that it’s possible
to customize more aspects of content type editing and to reuse more behaviors from Django itself, such as
raw_id_fields.

• FeinCMS has gained support for django-reversion.

• Reusing the media library in your own content types has become much easier than before. When us-
ing a feincms.module.medialibrary.fields.MediaFileForeignKey instead of the standard
django.db.models.ForeignKey and adding the media file foreign key to raw_id_fields, you get
the standard Django behavior supplemented with a thumbnail if the media file is an image. This requires the
next feature too, which is. . .

• Custom InlineModelAdmin classes may be used for the content types now by adding a
feincms_item_editor_inline attribute to the content type specifying the inline class to be used.

• New projects should use feincms.content.medialibrary.v2.MediaFileContent in-
stead of feincms.content.medialibrary.models.MediaFileContent. The argument
POSITION_CHOICES and the corresponding field have been renamed to TYPE_CHOICES and type
because that’s a more fitting description of the intended use. The old and the new media file content should not
be mixed; the hand-woven raw_id_fields support of the old media file content was not specific enough
and interferes with Django’s own raw_id_fields support.

• FeinCMS has gained a preview feature for pages which shouldn’t be accessible to the general public yet. Just
add the following line above the standard FeinCMS handler:

url(r'', include('feincms.contrib.preview.urls')),

Another button will be automatically added in the page item editor.

Apart from all these new features a few cleanups have been made:

• FeinCMS 1.2 removed the CKEditor-specific rich text content in favor of a generalized rich text content sup-
porting different rich text editors. Unfortunately the documentation and the available settings only reflected this
partially. This has been rectified. Support for TINYMCE_JS_URL, FEINCMS_TINYMCE_INIT_TEMPLATE
and FEINCMS_TINYMCE_INIT_CONTEXT has been completely removed. The two settings

3.10. FeinCMS 1.4 release notes 65

FeinCMS Documentation, Release 23.8.0

FEINCMS_RICHTEXT_INIT_CONTEXT and FEINCMS_RICHTEXT_INIT_TEMPLATE should be
used instead. See the Content types - what your page content is built of documentation for more details.

• The two settings FEINCMS_MEDIALIBRARY_ROOT and FEINCMS_MEDIALIBRARY_URL have been re-
moved. Their values always defaulted to MEDIA_ROOT and MEDIA_URL. The way they were used made it
hard to support other storage backends in the media library. If you still need to customize the storage class used
in the media library have a look at MediaFile.reconfigure.

• Support for the show_on_top option for the ItemEditor has been completely removed. This functionality
has been deprecated since 1.2.

• A few one-line Page manager methods which were too similar to each other have been deprecated.
They will be removed in the next release of FeinCMS. This concerns page_for_path_or_404,
for_request_or_404, best_match_for_request and from_request. The improved
for_request method should cover all bases.

• A few page methods have been deprecated. This concerns active_children,
active_children_in_navigation and get_siblings_and_self. The useful bits are already
available through Django’s own related managers.

3.11 FeinCMS 1.3 release notes

FeinCMS 1.3 includes many bugfixes and cleanups and a number of new features. The cleanups and features caused
a few backwards incompatible changes. The upgrade path is outlined below.

3.11.1 Highlights

• FeinCMS pages use the standard Django permalink mechanism inside the get_absolute_url implementa-
tion. This means that you have to update the URL definition if you did not include feincms.urls directly.

Change this:

url(r'^$|^(.*)/$', 'feincms.views.base.handler'),

to this:

url(r'', include('feincms.urls')),

Defining the URL patterns directly is still possible. Have a look at feincms.urls to find out how this should
be done.

• FeinCMS requires at least Django 1.2 but already has support for Django 1.3 features such as staticfiles. The
FeinCMS media file folder has been moved from feincms/media/feincms to feincms/static/
feincms - if you use django.contrib.staticfiles with Django 1.3 (and you should!), FeinCMS’
media files for the administration interface will automatically be made available without any further work on
your part.

• Content types can specify the media files (Javascript and CSS files) they need to work correctly. See Extra
media for content types for information on how to use this in your own content types.

• The content type loading process has been streamlined and requires much less database queries than before. The
performance hit on sites with deep page hierarchies, inheritance and many regions is several times smaller than
before.

• The content type interface has been extended with two new methods, available for all content types which need
it: process is called before rendering pages and is guaranteed to receive the current request instance. Each and

66 Chapter 3. Old release notes

FeinCMS Documentation, Release 23.8.0

every content type (not only application contents as before) has the ability to return full HTTP responses which
are returned directly to the user. finalize is called after rendering and can be used to set HTTP headers and
do other post-processing tasks. See Influencing request processing through a content type for more information.

3.11.2 (Backwards incompatible and other) Changes

• The default ContentProxy has been rewritten to load all content type instances on initialization. The in-
stances stay around for the full request-response cycle which allows us to remove many quasi-global variables
(variables attached to the request object). The new initialization is much more efficient in terms of SQL
queries needed; the implementation is contained inside the ContentProxy class and not distributed all over
the place.

• The ContactFormContent has been updated to take advantage of the new content type interface where
content types can influence the request-response cycle in more ways.

• The ct_tracker extension has been rewritten to take advantage of the new ContentProxy features. This
means that the format of _ct_inventory could not be kept backwards compatible and has been changed.
The inventory is versioned now, therefore upgrading should not require any action on your part.

• feincms_site is not available in the context anymore. It was undocumented, mostly unused and badly
named anyway. If you still need this functionality you should use django.contrib.sites directly your-
self.

• The _feincms_appcontent_parameters has been folded into the _feincms_extra_context at-
tribute on the current request. The appcontent_parameters template tag is not necessary anymore (the
content of _feincms_extra_context is guaranteed to be available in the template context) and has been
removed.

In your appcontent code, change all references of _feincms_appcontent_parameters to
_feincms_extra_context, e.g.

params = getattr(request, ‘_feincms_appcontent_parameters’, {})

becomes

params = getattr(request, ‘_feincms_extra_context’, {})

• As part of the effort to reduce variables attached to the request object (acting as a replacement for global vari-
ables), request.extra_path has been removed. The same information can be accessed via request.
_feincms_extra_context['extra_path'].

• The feincms.views.applicationcontent module has been removed. The special casing it provided
for application content-using pages aren’t necessary anymore.

• The page’s get_absolute_url method uses URL reversion for determining the URL of pages instead of
returning _cached_url. This means that you need to modify your URLconf entries if you added them to
your own urls.py instead of including feincms.urls. Please make sure that you have two named URL
patterns, feincms_home and feincms_handler:

from feincms.views.base import handler

urlpatterns = patterns('',
... your patterns ...

url(r'^$', handler, name='feincms_home'),
url(r'^(.*)/$', handler, name='feincms_handler'),

)

If you want the old behavior back, all you need to do is add the following code to your settings.py:

3.11. FeinCMS 1.3 release notes 67

FeinCMS Documentation, Release 23.8.0

ABSOLUTE_URL_OVERRIDES = {
'page.page': lambda page: page._cached_url,
}

• The copy/replace and preview mechanisms never worked quite right. They were completely dropped from
this release. If you still need the ability to create copies of objects, use the standard Django ModelAdmin.
save_as feature.

3.12 FeinCMS 1.2 release notes

Welcome to the first release notes for FeinCMS!

3.12.1 Overview

FeinCMS 1.2 sports several large changes, including:

• Overhauled item editor. The new item editor uses standard Django administration fieldsets; you can use almost
all standard Django configuration mechanisms. show_on_top has been deprecated, standard fieldsets
should be used instead.

• The split pane editor has been removed. It wasn’t much more than a proof of concept and was never bug-free.

• The required Django version is now 1.2. Compatibility with older Django versions has been removed.

• The rich text configuration has slightly changed; CkRichTextContent has been completely removed in
favor of a rich text editor agnostic configuration method. TINYMCE_JS_URL should be replaced by an ap-
propriate FEINCMS_RICHTEXT_INIT_CONTEXT settings value. See the Content types - what your page
content is built of documentation for more details.

• A new content type, TemplateContent has been added which can be used to render templates residing on
the hard disk.

• The TreeEditor JavaScript code has been rewritten, reintroducing drag-drop for reordering pages, but this
time in a well-performing way not sluggish as before.

• feincms.models.Base is still available, feincms.models.create_base_model is the more flex-
ible way of creating the aforementioned base model. If create_base_model is used the base model can be
freely defined.

• Many small improvements and bugfixes all over the place.

68 Chapter 3. Old release notes

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

69

FeinCMS Documentation, Release 23.8.0

70 Chapter 4. Indices and tables

Python Module Index

f
feincms.admin.item_editor, 20
feincms.admin.tree_editor, 19
feincms.content.application.models, 14
feincms.content.contactform.models, 14
feincms.content.file.models, 14
feincms.content.image.models, 14
feincms.content.section.models, 16
feincms.content.video.models, 17
feincms.contents, 16
feincms.module.medialibrary, 30
feincms.module.medialibrary.contents,

15
feincms.module.page, 4
feincms.module.page.extension, 6
feincms.module.page.templatetags.feincms_page_tags,

33
feincms.templatetags.applicationcontent_tags:,

36
feincms.templatetags.feincms_tags, 32
feincms.utils, 40

71

FeinCMS Documentation, Release 23.8.0

72 Python Module Index

Index

A
add_extension_options()

(feincms.extensions.ExtensionModelAdmin
method), 18

append_content_from() (Base method), 40
ApplicationContent (class in

feincms.content.application.models), 14

C
ContactFormContent (class in

feincms.content.contactform.models), 14
content (Base attribute), 40
content_type_for() (Base method), 40
copy_content_from() (Base method), 40
create_content_type() (Base method), 40

F
feincms.admin.item_editor (module), 20
feincms.admin.tree_editor (module), 19
feincms.content.application.models (mod-

ule), 14
feincms.content.contactform.models (mod-

ule), 14
feincms.content.file.models (module), 14
feincms.content.image.models (module), 14
feincms.content.section.models (module),

16
feincms.content.video.models (module), 17
feincms.contents (module), 15, 16
feincms.extensions.Extension (built-in

class), 18
feincms.extensions.ExtensionModelAdmin

(built-in class), 18
feincms.extensions.ExtensionsMixin

(built-in class), 18
feincms.module.medialibrary (module), 30
feincms.module.medialibrary.contents

(module), 15
feincms.module.page (module), 4

feincms.module.page.extension (module), 6
feincms.module.page.templatetags.feincms_page_tags

(module), 33
feincms.templatetags.applicationcontent_tags:

(module), 36
feincms.templatetags.feincms_tags (mod-

ule), 32
feincms.utils (module), 40
FileContent (class in feincms.content.file.models), 14

G
get_object() (in module feincms.utils), 40

H
handle_model() (feincms.extensions.Extension

method), 18
handle_modeladmin()

(feincms.extensions.Extension method), 18

I
ImageContent (class in

feincms.content.image.models), 14
initialize_extensions()

(feincms.extensions.ExtensionModelAdmin
method), 18

ItemEditor (class in feincms.admin.item_editor), 20

M
MediaFileContent (class in

feincms.module.medialibrary.contents), 15
model (feincms.extensions.Extension attribute), 18

R
RawContent (class in feincms.contents), 15
register_regions() (Base method), 40
register_templates() (Base method), 39
replace_content_with() (Base method), 40
RichTextContent (class in feincms.contents), 15

73

FeinCMS Documentation, Release 23.8.0

S
SectionContent (class in

feincms.content.section.models), 16

T
TemplateContent (class in feincms.contents), 16
TreeEditor (class in feincms.admin.tree_editor), 19

V
VideoContent (class in

feincms.content.video.models), 17

74 Index

	Contents
	Installation instructions
	Installation
	Configuration

	The built-in page module
	Activating the page module and creating content types
	Setting up the admin interface
	Wiring up the views
	Adding another content type
	Page extension modules
	Using page request processors
	Using page response processors
	WYSIWYG Editors
	ETag handling
	Sitemaps

	Content types - what your page content is built of
	What is a content type anyway?
	Rendering contents in your templates
	Implementing your own content types
	Customizing the render method for different regions
	Extra media for content types
	Influencing request processing through a content type
	Bundled content types
	Restricting a content type to a subset of regions
	Design considerations for content types
	Configuring and self-checking content types at creation time
	Obtaining a concrete content type model

	Extensions
	Administration interfaces
	The tree editor
	The item editor
	Putting it all together

	Integrating 3rd party apps into your site
	Default page handler
	Generic and custom views
	Integrating 3rd party apps

	Media library
	Configuration
	Rendering media file contents
	Media file metadata
	Using the media library in your own apps and content types

	Template tags
	General template tags
	Page module-specific template tags
	Application content template tags

	Settings
	Media library settings
	Rich text settings
	Settings for the tree editor
	Settings for the page module
	Various settings

	Database migration support for FeinCMS
	Django’s builtin migrations

	Versioning database content with django-reversion
	Advanced topics
	feincms.models.Base — CMS base class
	feincms.utils — General utilities
	Software design considerations
	Performance considerations

	Frequently Asked Questions
	Should I extend the builtin modules and contents, or should I write my own?

	Contributing to the development of FeinCMS
	Repository branches

	FeinCMS Deprecation Timeline
	1.6
	1.7
	1.8
	1.9
	1.10
	1.11
	1.12

	Change log
	Next version
	v23.8.0 (2023-08-07)
	v23.1.0 (2023-03-09)
	v22.4.0 (2022-06-02)
	v22.3.0 (2022-05-17)
	v22.2.0 (2022-05-06)
	v22.1.0 (2022-03-31)
	v22.0.0 (2022-01-07)
	v1.20.0 (2021-03-22)
	v1.19.0 (2021-03-04)
	v1.18.0 (2020-01-21)
	v1.17.0 (2019-11-21)
	v1.16.0 (2019-02-01)
	v1.15.0 (2018-12-21)
	v1.14.0 (2018-08-16)

	Old release notes
	FeinCMS 1.13 release notes
	Compatibility with Django 1.10
	Backwards-incompatible changes
	New deprecations
	Notable features and improvements
	Bugfixes
	Compatibility with Django and other apps

	FeinCMS 1.12 release notes
	Template content requires explicit list of templates
	The blog module has been completely removed
	Caching of pages in various page manager methods has been removed
	Backwards-incompatible changes
	New deprecations
	Notable features and improvements
	Bugfixes
	Compatibility with Django and other apps

	FeinCMS 1.11 release notes
	Template inheritance with application contents
	Explicit definition of navigation extensions is now possible
	Backwards-incompatible changes
	New deprecations
	Notable features and improvements
	Bugfixes
	Compatibility with Django and other apps

	FeinCMS 1.10 release notes
	Full compatibility with the app-loading refactor in Django 1.7
	TinyMCE 4.1 as default rich text configuration
	Home-grown schema checking support has been deactivated
	A better mechanism for assigning pages to different menu bars
	Backwards-incompatible changes
	New deprecations
	Notable features and improvements
	Bugfixes
	Compatibility with Django and other apps

	FeinCMS 1.9 release notes
	Extensions in the item editor
	A better way to mark pages as active in the navigation
	Backwards-incompatible changes
	New deprecations
	Notable features and improvements
	Bugfixes
	Compatibility with Django and other apps

	FeinCMS 1.8 release notes
	FeinCMS finally got continuous integration
	Preliminary Python 3.3 support
	Singleton templates
	Dependencies are automatically installed
	Backwards-incompatible changes
	New deprecations
	Notable features and improvements
	Bugfixes
	Compatibility with Django and other apps

	FeinCMS 1.7 release notes
	Extensions-mechanism refactor
	View code refactor
	Backwards-incompatible changes
	Notable features and improvements
	Bugfixes
	Compatibility with Django and other apps

	FeinCMS 1.6 release notes
	Backwards-incompatible changes
	Notable features and improvements
	Bugfixes

	FeinCMS 1.5 release notes
	Explicit reversing of URLs from ApplicationContent-embedded apps
	Inheritance 2.0
	Better support of InlineModelAdmin options for content types
	Minor changes

	FeinCMS 1.4 release notes
	FeinCMS 1.3 release notes
	Highlights
	(Backwards incompatible and other) Changes

	FeinCMS 1.2 release notes
	Overview

	Indices and tables
	Python Module Index
	Index

